

Complex Analysis homework.

by Energetic Plex Student, Aug. 2021

[See source file for additional info]

Most of \mathbb{C} . Use $\mathbf{P} := \text{PBal}_\infty(0)$ for the Punctured plane, and $\mathbf{L} := \mathbb{C} \setminus (-\infty, 0]$ for the sLit-plane. \square

1: Log-Abs Lemma. Functions $u(z) := \ln(|z|)$ on \mathbf{P} , and $v(z) := \text{Arg}(z)$ on \mathbf{L} , are harmonic. \diamond

Pf abstract. On \mathbf{P} , fnc Log has real and imaginary parts $u(z) := \ln(|z|)$ and $v(z) := \text{Arg}(z)$. Locally, Log is holomorphic except for the jump-discty of Arg on the negative real-axis. Consequently, u is harmonic on \mathbf{P} , and v is harmonic on the slit-plane. \diamond

Pf direct. Let $S := x^2 + y^2$. Then $u = \ln(S^{1/2})$, giving

$$\begin{aligned} u_x &= \frac{1}{S^{1/2}} \cdot \frac{1/2}{S^{1/2}} \cdot 2x \stackrel{\text{note}}{=} \frac{x}{S}. \quad \text{Thus,} \\ u_{xx} &= \frac{1 \cdot S - x \cdot 2x}{S^2} = \frac{y^2 - x^2}{S^2}. \end{aligned}$$

Symmetry gives $u_{yy} = \frac{x^2 - y^2}{S^2}$, so $u_{xx} + u_{yy} = 0$. \diamond

Pf direct. [Argument is slightly annoying due to the arbitrary choices, $\arctan()$ on $(-\frac{\pi}{2}, \frac{\pi}{2})$ and $\text{Arg}()$ on $(-\pi, \pi]$, in the relevant defns.]

For $x > 0$, note $v(z) = \arctan(y/x)$. The Chain rule asserts

$$\begin{aligned} v_y &= \frac{1}{1 + [y/x]^2} \cdot \frac{1}{x} \stackrel{\text{note}}{=} \frac{x}{S} \quad \text{and} \\ v_x &= \frac{1}{1 + [y/x]^2} \cdot \frac{-y}{x^2} \stackrel{\text{note}}{=} -\frac{y}{S}. \quad \text{Diff'ng again,} \\ v_{xx} &= [-y] \cdot \frac{-1}{S^2} \cdot 2x \stackrel{\text{note}}{=} \frac{2xy}{S^2}. \end{aligned}$$

After negation, v_y is symmetric with v_x . Consequently, $v_{yy} = -\frac{2xy}{S^2}$, showing v to be harmonic.

[Cases $x < 0$ and $x = 0$ are left to the reader.] \diamond

2: H-H Lemma. Suppose $\mathbb{R} \xleftarrow{h} \Lambda \xleftarrow{f} \Omega$, where Λ, Ω are open subsets of \mathbb{C} . If h is harmonic and f holomorphic, then $h \circ f$ is harmonic. \diamond

Pf abstract. Fix $p \in \Omega$ and an open ball $B \subset \Omega$ about $f(p)$. As f is cts, its inverse-image $f^{-1}(B)$ is open. So:

It suffices to show $h \circ f$ is harmonic on $f^{-1}(B)$.

On B , our h has an harmonic conjugate \tilde{h} , since B is simply-connected. On B , then, $H := h + i\tilde{h}$ holomorphic, whence $H \circ f$ is holomorphic on $f^{-1}(B)$.

Thus $\text{Re} \circ H \circ f \stackrel{\text{note}}{=} h \circ f$ is harmonic on $f^{-1}(B)$. \diamond

Pf computation. Let $f := u + iv$ and $G := h \circ f$, i.e,

$$G(x, y) := h(u(x, y), v(x, y)).$$

Then

$$G_x = h_u \cdot u_x + h_v \cdot v_x. \quad \text{Thus}$$

$$\begin{aligned} G_{xx} &= [h_{uu}u_x + h_{uv}v_x] \cdot u_x + h_u \cdot u_{xx} \\ &+ [h_{vu}u_x + h_{vv}v_x] \cdot v_x + h_v \cdot v_{xx}. \quad \text{Similarly,} \end{aligned}$$

$$\begin{aligned} G_{yy} &= [h_{uu}u_y + h_{uv}v_y] \cdot u_y + h_u \cdot u_{yy} \\ &+ [h_{vu}u_y + h_{vv}v_y] \cdot v_y + h_v \cdot v_{yy}. \end{aligned}$$

Sum $h_u \cdot u_{xx} + h_u \cdot u_{yy} = h_u \cdot [u_{yy} + u_{xx}] = 0$, since u is harmonic. And v is harmonic, so $G_{xx} + G_{yy}$ equals

$$\begin{aligned} &h_{uu}u_xu_x + h_{uv}v_xu_x + h_{vu}u_xv_x + h_{vv}v_xv_x \\ &+ h_{uu}u_yu_y + h_{uv}v_yu_y + h_{vu}u_yv_y + h_{vv}v_yv_y. \end{aligned}$$

Our C-R eqns permit replacing each v_y by u_x , and each v_x by $[-u_y]$. The rewritten ΔG is

$$\begin{aligned} &h_{uu}u_xu_x + h_{uv}[-u_y]u_x + h_{vu}u_x[-u_y] + h_{vv}[-u_y][-u_y] \\ &+ h_{uu}u_yu_y + h_{uv}u_xu_y + h_{vu}u_yu_x + h_{vv}u_xu_x. \end{aligned}$$

The rightmost blue term above green cancel out. The leftmost cyan above red cancel. So ΔG equals

$$\begin{aligned} &h_{uu}u_xu_x + h_{vv}u_yu_y + h_{uu}u_yu_y + h_{vv}u_xu_x \\ &= [h_{uu} + h_{vv}] \cdot [u_x]^2 + [v_x]^2. \end{aligned}$$

The leftmost bracket is zero, since h is harmonic. \diamond