

Linear Codes

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 24 April, 2023 (at 19:47)

$$*_S: \begin{aligned} \#\mathcal{C} &\leq Q^{N-[D-1]} \quad \text{so} \\ \log_Q(\#\mathcal{C}) &\leq N - [D-1] \end{aligned}$$

Entrance. An N -word over alphabet \mathbb{F} is a sequence $\mathbf{v} = v_1 v_2 \dots v_N$ of N letters. With $Q := |\mathbb{F}| \geq 2$, the number of N -words is Q^N . A *code(word) set* is a subset $\mathcal{C} \subset \mathbb{F}^N$; there are $2^{[Q^N]}$ codesets.

The *Hamming-distance* between \mathbf{v} and \mathbf{w} is

$$\mathbb{H}(\mathbf{v}, \mathbf{w}) := \#\{j \in [1..N] \mid v_j \neq w_j\}.$$

The (*min-*)*Hamming distance* of \mathcal{C} is

$$\text{minHD}(\mathcal{C}) := \text{Min} \{ \mathbb{H}(\mathbf{v}, \mathbf{w}) \mid \mathbf{v}, \mathbf{w} \in \mathcal{C} \text{ with } \mathbf{v} \neq \mathbf{w} \}.$$

Detection/correction. Use D for $\text{minHD}(\mathcal{C})$. A transmitted N -codeword \mathbf{v} might be distorted into a N -word $\tilde{\mathbf{v}}$. A position in \mathbf{v} may have been: *Changed to a different letter* –an *error*, or: *Replaced by noise* –an *erasure*. [E.g, an unreadable position on a magtape because the local magnetic field has weakened over time].

A distance- D codeset \mathcal{C} can:

- i: *Correct $D-1$ erasures.* [Knowing the erasure positions, there is but one consistent codeword.]
- ii: *Detect $D-1$ errors.* [Alas, we don't necessarily know the error-positions.]
- iii: *Correct $\lfloor \frac{D-1}{2} \rfloor$ errors.* [With $r := \lfloor \frac{D-1}{2} \rfloor$, the radius- r balls centered at codewords are mutually disjoint.]

Upperbnding \mathcal{C} . The volume of a radius- r ball in $\mathbf{v} \in \mathbb{F}^N$ is

$$V_r := \sum_{j=0}^r \binom{N}{j} \cdot [Q-1]^j.$$

Setting $r := \lfloor \frac{D-1}{2} \rfloor$ yields the *Hamming bound*

$$*_H: \begin{aligned} \#\mathcal{C} &\leq Q^N / V_r \quad \text{so} \\ \log_Q(\#\mathcal{C}) &\leq N - \log_Q(V_r) \end{aligned}$$

Singleton bnd. From each codeword, delete the first $D-1$ letters; the reduced codewords remain distinct, but now have length $N - [D-1]$ producing the *Singleton bound*

The Setting. Henceforth, $K < N$ and M are posints, and p is prime. Our alphabet is finite field $\mathbb{F} := \mathbb{F}_Q$, where $Q = p^M$. Both \mathbb{F}^K and \mathbb{F}^N are vectorspaces (VSeS) over scalar field \mathbb{F} .

A *linear codeset* is a dimension- K subspace $\mathcal{C} \subset \mathbb{F}^N$. As the *weight* of vector $\mathbf{v} \in \mathbb{F}^N$ is $\mathbb{H}(\mathbf{v}, \mathbf{0})$, the $\text{minWei}(\mathcal{C})$ is the minimum weight over all $\mathbf{v} \neq \mathbf{0}$. Easily

$$\text{minWei}(\mathcal{C}) = \text{minHD}(\mathcal{C})$$

A (*linear-*code*(map)*) is an injective linear map $\mathcal{C}: \mathbb{F}^K \rightarrow \mathbb{F}^N$ whose range is \mathcal{C} . Realizing vectors as column-vectors, we'll define \mathcal{C} by an $N \times K$ *generator matrix* \mathbf{G} over \mathbb{F} .