

Sets and Logic MHF32028768

Optional Individual-Project-Y

Prof. JLF King 31Aug2015

Due no-later-than: noon, Friday, 25Apr2014 slid completely under my office door, LITTLE HALL 402 [top floor, north-east corner.] Then please email me that you have handed-in a project. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Y1: Show no work.

Between sets $\mathbf{X} \coloneqq \mathbb{Z}_+$ and $\mathbf{Y} \coloneqq \mathbb{N}$, consider injections $f: \mathbf{X} \hookrightarrow \mathbf{Y}$ and $h: \mathbf{Y} \hookrightarrow \mathbf{X}$, defined by

$$f(x) := 3x$$
 and $h(y) := y + 5$.

Schröder-Bernstein produces a set $G \subset h(\mathbf{Y}) \subset \mathbf{X}$ st., letting $U := \mathbf{X} \setminus G$, the fnc $\beta : \mathbf{X} \hookrightarrow \mathbf{Y}$ is a bijection, where

*:
$$\beta |_U := f|_U$$
 and $\beta |_G := h^{-1}|_G$.

For this (f, h), the (G, U) pair is unique. Computing, $\beta(56) =$. $\beta(137) =$. $\beta^{-1}(603) =$

Each three sets Ω, B, C engender a natural bijection, $\Theta: \Omega^{B \times C} \hookrightarrow [\Omega^B]^C$, defined, for each $f \in \Omega^{B \times C}$, by

$$\Theta(f) \coloneqq \Big[c \mapsto [\qquad \qquad] \Big]$$

$$\begin{split} \Theta(f) \coloneqq \Big[c \mapsto \big[& \qquad \qquad \big] \Big]. \end{split}$$
 Its inverse-map $\Upsilon: \left[\Omega^B\right]^C \hookrightarrow \Omega^{B \times C}$ has, for $g \in \left[\Omega^B\right]^C$, $\Upsilon(g) \coloneqq \left[(b, c) \mapsto \right[$

Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the $\frac{Print}{Revise} \supseteq cycle$ to produce good, well thought out, essays. Start each essay on a **new** sheet of paper. Do not restate the problem; just solve it.

Y2: A dodecahedron is a convex polyhedron having 12 faces, 20 vertices and 30 edges; the faces are pentagons.] Two vertices of a regular dodecahedron are *neighbors* if they are distinct vertices of a common pentagon. [Each vertex has $[3 \cdot 4] - 3 = 9$ neighbors.] Write $v \sim w$ to indicate that v and w are neighbors. Easily, \sim is symmetric, and anti-reflexive. You can check that \sim is <u>not</u> transitive.

A *labeling* of a regular dodecahedron assigns, to each vertex, a positive integer. A labeling is legal IFF no pair $v \sim w$ of vertices is assigned the same label.

Prove there is no legal labeling with vertex sum [the sum of the 20 labels equaling 59.

Let $S \subset \mathbb{Z}_+$ be the *set* of sums obtainable from legallabelings. Characterize, with proof, S; you will likely need to construct some particular legal-labelings. [You showed, above, that $S \not\ni 59$.

Prof. JLF King Page 2 of 2

Y3: [For free: Union Thm: A countable union of countable-sets is countable. Also, Finite-subset Thm: The collection of finite subsets of a countable set, is countable. If needed, use $\mathcal{P}_{Fin}(S)$ for the collection of finite subsets of a set S, and use $\mathcal{P}_{\infty}(S)$ for the collection of infinite subsets of S.] Below, a **blip** is an infinite set of positive integers. A **family** $\{B_i\}_{i\in J}$ is a set of distinct blips, i.e, $\forall i,k \in J$: $[i\neq k] \Rightarrow [B_i\neq B_k]$.

Suppose $\forall i,k \in \mathbf{J}$ that $[i\neq k] \Rightarrow [B_i \cap B_k = \varnothing]$. Construct, with proof, an injection $g: \mathbf{J} \hookrightarrow \mathbb{N}$, to conclude that this index-set \mathbf{J} is only countable.

Instead suppose $|B_i \cap B_k| \leq 1$, for each distinct indexpair $i, k \in \mathbf{J}$. Prove that \mathbf{J} is only countable. Once solved, weaken the hypothesis to $|B_i \cap B_k| \leq 2$, yet still show \mathbf{J} countable. Finally, weaken to $|B_i \cap B_k| \leq 3$, and prove that \mathbf{J} is only countable. Can you generalize?

[Challenging/Creative; Making **J** equal \mathbb{R} .] Construct a specific family $\{B_x\}_{x\in\mathbb{R}}$, that is, define a specific injection $h: \mathbb{R} \hookrightarrow \mathcal{P}_{\infty}(\mathbb{Z}_+)$, so that: For each distinct index-pair $x, y \in \mathbb{R}$, the intersection $[B_x \cap B_y]$ is finite.

End of Optional Individual-Project-Y **Y1**: 60pts **Y2**: 85pts**Y3**: 115ptsPoorly stapled, or not double/triple-spaced, or font too small. Total: Please PRINT your name and ordinal. Ta: Ord: HONOR CODE: "I have neither requested nor received help on this exam other than from my professor." Signature: Folks, I have had a great time working with you this Semester. Stop by next semester to "Talk Math".

Cheers, Prof. Sieve-brain