Prof. JLF King 1Sep2015

Y1: Show no work. Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

Prof. King wears bifocals, and cannot read small handwriting. Circle one: True! Yes! Who?

Alice's RSA code has modulus is M=6557, and encryption exponent $\mathbf{E}:=749$, both public. Bob has a message that can be interpreted as a number β in [0..M). Since Alice knows the secret factorization $M=p\cdot q$ into primes, p=79, q=83, she can compute the decryption exponent $\mathbf{d}=\{\mathbf{E}_+, \mathbf{E}_+\}$. Bob's encrypted message $\mu:=\{\beta^{\mathbf{E}}\}_M=007$. Alice decrypts it to $\{\mu^{\mathbf{d}}\}_M=\{0..M\}$.

OLD: Let $f(x) := x^2 - 4x - 2$, and $Z_0 := c_0 := 3$. Note $f(Z_0) \equiv_5 0$. Note $f'(Z_0) = \neq_5 0$. Use Hensel's lemma to compute coefficients $c_k \in [0..5)$ [put them in the blanks, below]

$$Z_3 = \underbrace{c_0 \cdot 5^0 + \cdots \cdot 5^1}_{Z_2} + \underbrace{\cdots \cdot 5^2}_{Z_2} + \cdots \cdot 5^3$$

so that integers $Z_k := \sum_{i=0}^k c_i 5^i$ satisfy

$$f(Z_k) \equiv 0 \pmod{5^{k+1}},$$

for k = 1, 2, 3.

Let $f(x) := x^2 - 4x - 2$, and $Z_1 := c_0 := 3$. Note $f(Z_1) \equiv_5 0$. Note $f'(Z_1) = \neq_5 0$.

Use Hensel's lemma to compute coefficients $c_k \in [0..5)$ [put them in the blanks, below]

$$Z_4 = \underbrace{c_0 \cdot 5^0 + \cdots \cdot 5^1}_{Z_3} + \underbrace{\cdots \cdot 5^2}_{Z_3} + \underbrace{\cdots \cdot 5^3}_{}$$

so that integers $Z_k := \sum_{i \in [0..k)} c_i 5^i$ satisfy

$$f(Z_k) \equiv 0 \pmod{5^k},$$

for k = 2, 3, 4.

Number $M \coloneqq 229$ is prime. PoP-factor $\boldsymbol{\varphi}(M)$ as . Compute the multiplicative-order,

 $\operatorname{Ord}_M(-5) =$. [Hint: Use the Descent Alg.]

TMWFIt, 8 is a mod-125 primroot, since its mult-order (mod 125) is $100 \stackrel{\text{note}}{=\!=\!=} \varphi(125)$. Use the CRT-isomorphism to compute the corresponding mod-250 primroot R=

S(98,000,000) = where

for posints k, let S(k) be the number of mod-k square-roots of 1. BTWay, group $(\Phi(1024), \cdot, 1)$ is isomorphic to this product of cyclic groups.

[Let \mathbf{C}_N denote the cyclic group with N many elements.]

Prof. JLF King Page 2 of ??

Y1: Missing Ordinal,	 195pts
name or honor sig::	 -35pts
Total:	195pts