NT-Cryptography
MAT4930 2H22
Home-W
Prof. JLF King
Wedn. 23Mar2016

Due: BoC, Wednesday, 30Mar2016. Fill-in every blank on this sheet. This sheet is the first-page of your write-up, with your essays securely stapled to it.

W1: Show no work. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

Using 32-symbol alphabet “abc...z’,?!” mapped to [0..32], the 36-character phrase “bpqzinpgfbypjnx!p,u¡x!pbqqzufb zan’” comes from cleartext which undoubtedly starts with “a fine”. The encryption affine-map is thus
\[\alpha \mapsto \left[\begin{array}{c} s \alpha + \beta \end{array} \right] \mod 32. \] Decryption is
\[\beta \mapsto \left[\begin{array}{c} s \beta + \alpha \end{array} \right] \mod 32. \] The full cleartext is “starts with “a fine”.

\[S(98,000,000) = \] where, for posints \(k \), let \(S(k) \) be the number of mod-\(k \) square-roots of 1. BTWay, group \((\Phi(1024),\cdot,1) \) is isomorphic to this product of cyclic groups.

[Let \(C(N) \) denote the cyclic group with \(N \) many elements.]

OYOP: Your 3 essay(s) must be TYPED, and Double or Triple spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a NEW sheet.

Do not restate the problem; just solve it.

W2: Use Pollard-\(\rho \) to find a non-trivial factor of \(M := 557489183 \), using seed \(s_0 := 1 \) and map \(f(x) := 1 + x^2 \). Make a nice table, labeled

<table>
<thead>
<tr>
<th>Time</th>
<th>Tortoise</th>
<th>Hare</th>
<th>(s_{2k} - s_k)</th>
<th>(\gcd(??))</th>
</tr>
</thead>
</table>

—but replace the “???” with the correct expression. You found non-trivial factor \(E := \)

The hare Hits into the tortoise at time \(H := \)

Repeat, showing the table for \(s_0 := 7 \). Experiment with different seeds; what is the typical running time? How is it related to the factor you find?

A seed \(s \) determines a \textbf{tail}: the smallest natnum \(T \) for which there is a time \(n > T \) with \(f^n(s) = f^T(s) \). The smallest such \(n \) is \(T+L \) where \(L \) is the \textbf{period}. Derive (picture-reasoning) a formula for the hitting time \(H(T, L) \).

[Hint: \(H(0, L) = L \)]

W3: Suppose the letters A F H M N U have frequencies \(\frac{12}{170}, \frac{46}{170}, \frac{38}{170}, \frac{18}{170}, \frac{41}{170}, \frac{41}{170} \), respectively. Construct the unique Huffman prefix-code with these frequencies; at each coalescing, use 0 for the less-probable branch and 1 for the more-probable. \textbf{Draw} the Huffman tree (large!). Label the branches and leaves with bits and letters. The name \textbf{HUFFMAN} encodes to

Examining the tree, what kind of \textbf{Being} is \textbf{HUFFMAN}?

Answering the question “What’re y’all?”

message \textbf{1010001010101110100110111010} decodes to...

W4: [See (1.1) and (1.1') in our “Notes on Codes”]. Over some alphabet \(G \) of cardinality \(\Gamma := |G| \), \textbf{either}: Produce a code \(C \) which is \textbf{weakly-UD} but \textbf{not UD}; \textbf{or} prove that no such code exists.

Honor Code: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” Name/Signature/Ord