$\begin{array}{ccc} \text{Differential Eqns} & \textbf{W-Class} & \begin{array}{c} \text{Prof. JLF King} \\ \text{30Sep2015} \end{array}$

W1: Show no work.

- One of the authors of our text is Circle:

 Archimedes DNE Euler Fuchs Gauss Mendez Sanders

 Stirling Trump Tillman Williams Wright York Ziv
- is the general soln to $\frac{\mathrm{d}y}{\mathrm{d}t} = 8t^3 \cdot [y-5]$. [Hint: SoV.]

 The particular y() with y(0) = 8 is $y(t) \coloneqq$. And this function has y(1) = .
- A particular soln y = y(t) to *: $\left[\mathbf{D} - 5\mathbf{I}\right]^{3}(y) = \mathbf{e}^{5t} + \mathbf{e}^{3t}$

is y(t) =So the general soln is $y_{\alpha,\beta,\gamma}(t) =$

- Function h() satisfies 2h'' + h' 6h = 0, and initial conditions h(0) = 5 and h'(0) = -3. So $h(t) = \alpha e^{At} + \beta e^{Bt}$, for numbers $\alpha = 0$, A = 0, $\beta = 0$, B = 0.
- Fnc $y_{\alpha}(t):=$ is the gen.soln to $y'+\left[\frac{2}{t}\cdot y\right]=t^3$. [Hint: FOLDE.]

W2: Show no work.

DiffOperators P, Q, R, S are defined as

$$\mathbf{P}(f) := f(3) \cdot f', \qquad \mathbf{Q}(f) := \cos(3) \cdot f^{(3)}, \mathbf{R}(f) := [\cos(3) \cdot f] + f'', \qquad \mathbf{S}(f) := \cos(3) + [3f'].$$

Then... P is linear: T F. Q is linear: T F. R is linear: T F. S is linear: T F.

The discriminant of polynomial $f(x) := 3x^2 + 3x + 1$ is Discr(f) =

Let $f(t) := 3e^{5t}$ and $g(t) := e^{5t}$. Translating, then, $\mathbf{T_r}(f) = g$, where $\mathbf{r} = \mathbf{r} \in \mathbb{R}$.

End of W-Class

Total: _____ 195pts

Please PRINT your name and ordinal. Ta:

Ord:

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature:

Hello. Please write **DNE** in a blank <u>if</u> the described object does not exist or if the indicated operation cannot be performed. Write expressions unambiguously e.g, "1/a + b" should be bracketed either [1/a] + b or 1/[a+b]. (Be careful with negative signs!)

Do **not** approx.: If your result is " $\sin(\sqrt{\pi})$ " then write that rather than $.9797\cdots$.

Use "f(x) notation" when writing fncs; in particular, for trig and log fncs. E.g, write " $\sin(x)$ " rather than the horrible $\sin x$ or $[\sin x]$.

Write rational numbers as fractions: E.g $\frac{1}{2}$ and 1/3, but not 0.51 nor 0.3333...; use fractions.