Sets	and	Logic
MHF3202 8768		

Prereq-V

Prof. JLF King 31Aug2015

V1: Show no work. *NOTE*: The <u>inverse-fnc</u> of g, often written as g^{-1} , is different from the **reciprocal fnc** 1/g. E.g, suppose g is invertible with g(-2)=3 and g(3)=8: Then $g^{-1}(3)=-2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8.$

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Line y = Mx + B is orthogonal to $y = \frac{1}{5}x + 2$ and owns (4, 10). So M = and B = .

Quadratic $6x^2 + 29x + 35 = [Ax - \alpha] \cdot [Bx - \beta]$, for numbers A= , $\alpha=$; B= , $\beta=$.

Below, f and g are differentiable fncs with

$$f(2) = 3$$
, $f(3) = 5$, $f'(2) = 19$, $f'(3) = 17$,

$$g(2) = 11$$
, $g(3) = 13$, $g'(2) = \frac{1}{2}$, $g'(3) = 7$,

$$f(5) = 43$$
, $g(5) = 23$, $f'(5) = 41$, $g'(5) = 29$.

Define the composition $C := g \circ f$. Then

$$C(2) = \qquad ; C'(2) =$$

Please write each answer as a product of numbers; do **not** multiply out. [Hint: The Chain rule.]

Let $y = f(x) := [7 + \sqrt[3]{2x}]/5$. Its inverse-function is $f^{-1}(y) = \frac{1}{2} \qquad .$

Let $g(x) := x^3 + 2x - 5$. Then $g^{-1}(7) =$

For natural number N, the sum

 $\sum_{k=18}^{18+N} 4^k \text{ equals}$

Marty the martian has 3 feet. In his sock drawer, he has 50 red socks, 50 blue socks and 50 green socks; 150 socks total, loose, jumbled. The minimum number of (individual) socks he need take, to guarantee a matched set of 3 socks, is

160pts Total: 160pts

Please PRINT your Name

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: