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¢ DPREFACE

What do the following three problems have in common?

Poncelet’s Theorem. The lefthand figure below shows a pair of ellipses C and E which happen
to have a ctrcuminscribed polygon; a polygon which is simultaneously inscribed in the outer
ellipse and circumscribed about the inner ellipse.

\ eeponnew

FigureP.1a FigureP.1b

F1GURE P.1 On the left are two non-degenerate ellipses, with a quadrilateral (solid line) inscribed in C
and circumscribed about E. The dotted-line shows another circuminscribed quadrilateral, which
can be thought of as the first quadrilateral “rotated” about E. The righthand figure shows a pair
of ellipses with a (self-intersecting) circuminscribed pentagon.

Jean-Victor Poncelet’s famous CLOSURE THEOREM, published in his Traité des propriétés projec-
tives of 1822, asserts that if there exists one circuminscribed n-gon then any point on the boundary
of C is the vertex of some circuminscribed n-gon. Indeed, if we allow the n-gon to continuously
change its shape, a circuminscribed n-gon can be continuously rotated around E.

How might this theorem be generalized to the case where the CE pair has no circuminscribed
polygon?

Tarski’s Plank Problem. Consider a circular table with diameter 9 feet. At your disposal

are many planks, each 1 foot wide and longer than 9 feet. What is the minimum number of planks
required to cover the surface of the table?
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F1GURE P.2 Thin planks partially covering a round tabletop, in criss-cross fashion. The planks can
be thought of as being infinitely long.

Nine parallel planks certainly cover the tabletop. But can you take fewer and criss-cross them to
cover the tabletop? If countably many planks of different widths are permitted, is there a cover
using less total width than the parallel one?

Gelfand’s Question. In the table below, row n has the leftmost (high-order) digit of the

numbers 2™,3",...,9", when written in base ten. The “7” in the third row, column 9", is the 7
from 729 = 93.

n: 2" 3" 4" 5" 6" 7" 8" 9"

1. 23 4 5 6 7 8 9

224 9 1 2 3 4 6 8

3: 8 26 1 2 3 5 7

4: 1 8 2 6 1 2 4 6

5 3 2 1 3 7 1 3 b

6: 6 7 4 1 4 1 2 5

71 2 1 7 2 8 2 4

99: 6 1 4 1 1 4 2 2

TABLE P.3 The leftmost digits of powers.

Will a “9” ever occur in the 2-column? Will the row “23456789” appear again? If so, will the
set of n such that row, = “23456789” have a frequency? —and if it does, will it be rational or
irrational? Will a row of all-the-same-digit occur? Will the decimal expansion for an 8-digit prime
ever appear?

Philosophy. At first glance the three problems seem to have little in common; Poncelet’s theorem
is a question about conic sections, the Plank problem about geometric set-inclusion, and Gelfand’s
question is number theoretic. Yet it turns out that two of these three are secretly isomorphic.

More significantly, they have a less precise but deeper commonality in that each of the three
problems has, sitting somewhere inside it, a natural measure—a measure which, on some collection
of sets, is preserved under some family of motions. This basic tool of an tnvariant measure is
the theme of this article. It will turn out that the associated invariant measures make the hidden
isomorphism conspicuous.
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Anatomy. The next three sections construct in turn natural invariant measures for Poncelet’s
Theorem, the Plank Problem and Gelfand’s Question, and can be read essentially independently.
All three measures are finite measures which can be interpreted as lengths, areas or volumes.
Consequently, the reader need only have an intuitive feel for the size of a set; no theorems of formal
measure theory’ are used. The hope is that the article can be read by motivated undergraduates
who are comfortable with integration and elementary topology.

The APPENDIX contains a brief history of each problem or a pointer to such. It alludes to the
connection with ergodic theory, and ends with an open problem.

Idiosyncrasy. Use “a :=0" to mean “a is defined to be b”. We use the usual symbol, “B°”, for
the complement of a set B; let “ AN B” denote the set-difference AN B°. Symbol | |~ By indicates
that the sets {By}x in the union happen to be disjoint.

If A is a measure such as “length” on a space Y, then a “A-nullset” B C Y has zero length,
A(B) = 0. An example is a set B consisting of finitely many points. The pair (Y, \) is called a
measure space. A map ¢ : X — Y between two measure spaces (X, py) and (Y, \) is measure-
preserving if

(e 'B) = \(B), for all subsets B of Y.

A measure-preserving map R: X — X from a space to itself is called a transformation, which
we write in full as (R: X, ). Finally, for a point z € X let R"(z) denote the n-fold composition
R(R(.7.R(2)...)). The sequence of points z, R(z), R?(z),... is the orbit of z under R.

§1 DPONCELET’S THEOREM

From any point outside of E, a “righthand tangent to E” can be consistently chosen. In particular,
E gives rise to a “righthand homeomorphism”, R, mapping C to itself.

R(Z 1zE,

R(2)

E|,

R‘(z

C
R2(z)

FIGURE 1.1 Two ellipses, with E properly inside of C. An observer standing at z peering inward at E
sees a “righthand” and a “lefthand” tangent to E. Call the righthand tangent map R: C — C.
NoTaTION: From a point z outside E, let |z,E|r and |z,E|r denote the distance from z to the
lefthand and righthand tangent points on E. In the case E is a circle, ie. |z, E| = |z, E|Rg, agree to
write |z, E| for the common value.

tOriginally, this article contained a fourth problem, invented by David Feldman, concerning billiards in the cusp
between the curves y = 1/x and y = —1/z. Because its solution does use elementary measure theory —and on an
infinite measure space— as well as the idea of recurrence in a dynamical system, the discussion of that problem will
appear separately, in [KING].
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Viewed this way, Poncelet’s theorem becomes a statement about the dynamics of the map R and
explains why it is called a CLOSURE THEOREM,; if the orbit of one point z “closes up” in n steps,
that R™(z) = z, then the orbit of any point closes up and also in n steps.

In closing up, if the orbit of z “winds around E” p times (p = 1 and n = 4 in FIGURE P.1a;
in P.1b, p = 2 and n = 5) then every point’s orbit would have to wind p times before closing up,
since R preserves order along C. This suggests that —after a suitable change of coordinates— R is
simply a rigid rotation of a circle by rational rotation number p/n. Let K := [0,1) be the half-open
interval topologized as a circle, and let & and & denote addition and subtraction modulo 1. For a
rotation number a € R, let

Ppa K=K:iz—zda

be the corresponding rigid rotation. A “change of coordinates” would then be a homeomorphism
p: C — K with a commutative diagram

|¢ |¢ (1.2)

K — K
Such a ¢ satisfying ¢ o R = p, 0 ¢ is called a topological conjugacy from R to p,. Poncelet’s

theorem would thus follow from

LEMMA 1.3. For ellipses C, E and mapping R as in FIGURE 1.1, there is a rotation number
a € [0,1) and topological conjugacy ¢ carrying R to pq.

Indeed, this lemma asserts something even if the R-orbit of z fails to close up—the case when «
is irrational.

The appearance of a measure. Arclength measure A is tnvariant under rotation p,, that is,

Apa'(B)) = A(B)

for any set B included in K. We normalize A to a probability measure, A(K) = 1. A conjugacy ¢
would lift A to an R-invariant measure g on C,

u(A) = A(@(A)) \ (1.4)

which we will call good: finite, non-atomic (any individual point has zero p-length) and giving
positive length to open intervals.
It is the converse which will help us out:

An R-invariant good p gives rise to a topological conjugacy.

In order to define this conjugacy, for points z,y € C let [z,y) denote the half-open interval on C
going counterclockwise from z to y. Next, normalize p so that p(C) = A(K) = 1; now, for any
three points z,y,z on C

1(lz,9) @y, 2) = p(lz1)).
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Fix any particular point zy € C. Define ¢ and o by

o(y) == p([zo,y)) and o= ,LL([ZO,RZO)) ) (1.5)

Thus ¢ sends zg to 0 in K and is well-defined because of the normalization. Non-atomicity implies
continuity of ¢ and the “positive length” condition insures that ¢ is invertible. Invariance yields
that for any x,

M([RZ(%R:E)) S/ /J([RZO,?L‘))
M([zovx)) @:LL<[RZO7$))
,LL([Z(),RZQ)> = a.

p([z, Rz))

In other words, the rotation number o did not truly depend on the arbitrary point zg, but only on
the R-invariant measure p. With this, it is easy to verify that ¢ carries R to p,, as in (1.2).

Our previous lemma can be restated now like this.

LEMMA 1.3'. For ellipses C and E, with R as in FIGURE 1.1: There exists an R-invariant good
measure (.

When C and E are concentric circles, arclength measure along C is R-invariant. However, the
case where they are non-concentric circles seems not as apparent, and the general elliptical case is
less evident still. Happily, we can at least assume that the outer ellipse C is a circle—since any
linear map of the plane carries ellipses to ellipses and tangent chords to tangent chords and so
carries FIGURE 1.1 to another just like it. So before even starting to construct i, one can linearly
compress the figure along the major axis of C to arrange that now C is a circle.

Rolling the chord. The righthand map, R, generally stretches or shrinks sub-intervals I C C,
thus making the standard arclength non-invariant. A direct approach to making an R-invariant
“length” p, is to compensate for stretch/shrink by integrating against arclength an appropriately
chosen “height function” h whose height varies so as to cancel out the distortion introduced by R.
Then the “p-length” of a set A would be

,LL(A) _ ,LLh(A) — /Ah(z) d» where “dz” denotes arc- (16)

length measure on C.

If h is a continuous function from C to the positive reals, then automatically ¢ will be non-atomic
and give positive length to open intervals. The issue becomes: What property does h(-) need to
fulfill for the measure p = py to be R-invariant near a point z 7
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FI1GURE 1.7 Circle C surroundsellipse E. Let z and y be points at opposite ends of a chord tangent to E,
and let £, and £, denote their distance to the common point of tangency. Roll the chord through a
small angle §. Its “z end” sweeps out an arc on C as does its “y end”; on the corresponding tangent
lines, distances Az and Ay are swept out.

zZ-arc y-arc

In the above figure, the ratio £¢7= — 1 as the angle 6 ™\, 0, and similarly Ry 1. Consequently,
the “infinitesimal ratio” of the y-arc to the z-arc is

Ay ¢
lim — lim =Y =

y-arc y
#N0 z-arc N0 Az L,

this last equality comes from the equality £ Pyz = £ Pzy of the base angles of isosceles triangle y Pz
at the right of FIGURE 1.7.

Infinitesimally, the p-length of the “z-arc” is simply its arclength times h(z). So for p to be
R-invariant at z, the function ~ must satisfy that —infinitesimally— the product i(z) Length(z-arc)
equals h(y) Length(y-arc). In consequence, the invariance condition required of h(-) is

h()-|5Elr = h(y) [y, Ely,  where y = Re. (1.8a)

This uses the previous displayed-equation as well as ¢, = |z, E|g and ¢, = |y, E|}.

PROOF OF LEMMA 1.3": If our inside ellipse E happens to be a circle, then the lefthand and
righthand tangential-distances equal a common function z — |z, E|. Then

h(z):=1/ |z E|

satisfies (1.8a), and the corresponding p is the desired R-invariant measure.

To handle the non-circular case, choose some linear map A which transforms E into a circle.
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¢ Z

A2)

F1GuRE 1.9 Ellipse E is carried by linear map A to a circle A(E). For artistic convenience, the
linear map illustrated simply compresses the major axis (vertical, in the diagram) of E until equal-
ity with E’s minor axis. Each point of chord ytz is carried vertically downward to line-segment
A(y)A(t)A(z); here t is the point where the yz-chord is tangent to E.

Since a linear map preserves the ratio of lengths of parallel line-segments, we have that

|y7E|L _ |"4y7~’4E|L
|Z,E|R |.AZ,.AE|R

But since AE is a circle, the subscripts on the second ratio are unnecessary and it can be written

| Ay, AE| /| Az, AE|. Just as before, then,

1
h(z) = ———— for all C 1.8b
(2) L AR or all z € C, (1.8b)

satisfies (1.8a) and makes the measure pj, —which we will call Poncelet-measure— invariant un-

der R.

Exercise: Poncelet-measure for a special case. Suppose C and E are confocal ellipses, with foci
at (0, £F) and with semi-minor axis lengths of 1 and r respectively, ie.

2 2 2
y =12 and E:m—2+ y :12,

C: 224+ 2 = 7
m+F2+12 r F2+712

with 0 < r < 1. Then Poncelet-measure gy will be the integral, against arclength measure along ellipse C,
of the function

1
h(z,y) = const - , (1.10)
\/(1 + 22F2)(r2 4+ 22 F2)
where the constant is the square root of (F? + r2)/(1 — r2). O

Remark. What can be said when CE has no circuminscribed polygon? —that is, when R is
conjugate to an irrational rotation. One starts drawing tangent-chords from some point z, as in
FIGURE 1.1, but the polygon-in-progress never closes up. What will be true is that the vertices of
this unfulfilled polygon will densely fill out C:

Under an irrational rotation p = p,, the orbit of 0 is dense. (1.11)
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To establish this, partition the circle K into M subintervals [O, ﬁ), ceey [M]\ZI , 1). Take N > 1
smallest such that pN(O) falls inside [0, ﬁ) (This certainly will happen for an N < M since, by the Pigeon-
hole Principle, some two of the M + 1 points {0, p(0), p2(0), ..., p™(0)} fall into the same subinterval.) Thus the

pN-orbit of 0 is ﬁ—dense. So its p-orbit is e-dense, for all . O

By the way, it is natural to wonder whether the Poncelet rotation-number « is essentially unique;
is it independent of linear map A? That it is, follows from this challenge:

If rotations p, and pg are topologically conjugate, where 0 < a, 3 < %, then o = 3.

Another natural question, which is discussed in the appendix, is to wonder

Is Poncelet-measure unique? How does
wy depend on our choice of linear map A?

(1.12)

2 'THE PLANK PROBLEM

Experimentation with strips of paper as “planks” tends to suggest that a disk D cannot be efficiently
covered unless the strips are parallel, which leads one to this

PLANK CONJECTURE. Suppose (wy)5%, are the widths of a countable family of planks which cover
disk D. Then

Y w, > Width(D).

n=1
If 327wy, actually equals Width(D), the diameter of the disk, then the planks must be parallel
to one another.

Measuring area differently. We can take D to be the closed radius-1 disk centered at the origin
and ask that a plank P be the closed region between two parallel lines, both of which contact D.
The width of P is the perpendicular distance between these parallel edges.

In order to cover the disk by small total width, one is tempted to use planks which pass near
the center of D, since such planks P cover more than their fair share of the area of the disk; more
than Width(P)/ Width(D). Yet if many planks pass near the center, they must waste some of
their area by overlapping one another. Conversely, while it is easy to arrange that planks passing
near the boundary of D be disjoint, such planks cover less than their fair share.

An answer to the Plank problem is not obvious because the area covered by a plank P is not
invariant under moving P over the disk. An analogy with Poncelet’s theorem is useful. The only
obuious case where a circuminscribed polygon can be rotated about E, is when the two ellipses are
concentric circles. And this is exactly the case where normal arclength on C is evidently invariant
under R. What saved the day, in the case of general ellipses, was the discovery of a different way
of measuring length on C, the measure pj of (1.6), which indeed is invariant under motion by R.

Returning to our planks, the analogy suggests looking for a new way to measure area on D so
that this “new area” —at least for planks— is invariant under rigid motions. We might expect to
construct this measure, v, as we did with Poncelet-measure, by integration of some nice positive
height function h: D — R4 against area. If we build v in this way, then any subset of the disk
with zero v-area would have to have zero area, as well. Also, the desired invariance of v under
rigid motions would mean there is a positive constant h so that

v(P) = h-Width(P), for any plank P. (2.1)
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One clarification is in order. Since v is to be a measure on D, we need to interpret a plank P as
subset of the disk and agree to regard “P” as the set P N D. With this convention, D itself is a
plank.

Assuming now that someone with outstanding geometric intuition has provided us with such
a v, let’s use it to verify the conjecture.

PROVISIONAL PROOF OF THE PLANK CONJECTURE: If planks {P,}{° cover D then

Width(D) = ;v(D) = tv(| ] Pn)

<ED v(Pa)=)  Width(P,).

This shows that no cover can use less total width than a parallel cover.

(2.2)

To show that only parallel covers use minimal width, suppose now we have a cover realizing
equality in (2.2), that is, > v(Pn) = y(Un Pn). Consequently, the intersection P; N P; of any
pair of planks must have no v-area and thus no area. This means that in a minimal cover any two
planks have disjoint interiors; no two planks overlap. So we need but prove that

Any two planks P and R of a non-overlapping cover, are parallel.

To see this, consider any plank ) of the cover which intersects segment Ly in the figure below.

\eenot paral | el

FIGURE 2.3 Given two planks P and R, choose distinct parallel line-segments L1 = p17r1 and Ly = para;
the L; are “open” segments, not containing their endpoints. Endpoints p; and r; are on neighboring
edges of P and R, respectively. Since Ly and Ls are disjoint from P and R, they must be covered
by the other planks.

We can have chosen the point p; to be in the interior of D; so () cannot have L; as an edge.
Therefore, since @) overlaps neither P nor R it must run between their neighboring edges; hence )
crosses both Ly and L,. Since the L; are parallel, intervals Q N Ly and Q N L, have the same
length. Consequently,

Z Length(Q N Ll) = Z Length<Q N L2) ,

Qe QeQ

where Q1 consists of all planks in the cover which overlap Li. But these planks do not overlap
each other. Consequently the closed intervals {Q N Li}QEQl are non-overlapping, and we may

conclude that Length(L;) < Length(L,). Reversing the roles of L; and L, shows that they have
equal length. And this means that P and R were parallel all along. O
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Both halves of the proof, the inequality and the parallelness, hinge upon our not-yet-known-to-
exist plank-measure v. The rotational symmetry of condition (2.1) suggests looking at rotationally
symmetric geometric figures as a possible source of plank-measure. It turns out that the geometric
insight which will provide plank-measure was made by Archimedes in his treatise On the Sphere

and the Cylinder.

Archimedes’ area-preserving map of the Earth. The figure below shows how to project
the globe onto a cylinder of paper in order to get a map of the Earth on which countries of equal
spherical-area are represented by map-regions of equal (planar) area.

\ eeband

FI1GURE 2.4 A sphere S and a (finite) cylinder C are tangent along their common equator. The height
of C equals the sphere’s diameter. For a point p € S, let p € C be its radial-projection: A ray
starting from and perpendicular to the axis-of-symmetry of C passes through p and intersects the
cylinder at p.

Archimedes proved that for any region B on the sphere,
AreaC(B\) = Areag(B).

Since both the sphere and the cylinder are rotationally symmetric, it suffices to establish this
when B is a band. FIGURE 2.4 shows, drawn on a sphere of radius 1, a band B with lower edge
at latitude 6y, and upper edge infinitesimally higher at latitude 6y + df. Since the radius of the
bottom edge of B is r = cos(fp),

InfinitesimalAreag (B) = (27r) - df = 27 cos(fy) db .

The projected band B has radius 1 and infinitesimal width df = d6 - cos(6p), by similar triangles.
Consequently

InfinitesimalAreac (B\) =(27-1)- df = 2x db cos(fp) .

The two infinitesimal areas are thus seen to be equal. O
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Constructing plank measure. Area-measure of a sphere whose equatorial-plane is D, when
projected down to D, has the desired plank property.

FIGURE 2.5 A sphere S whose equatorial-plane is our disk D. For a subset A C D, let Ag be its
orthogonal projection on the sphere. Thus the projection of a subdisk concentric with D would be
a pair of “polar icecaps”.

Define v by
v(A) := Areag (AS) )

The image of a plank P C D is a band Ps on the sphere. The sphere can then be oriented so

that the band projects on the cylinder to a cylindrical-band ﬁg whose width necessarily equals the
width of the original plank P. Thus

v(P) = Areag(Ps) = Areac (Ps) = 2r - Width(P);

demonstrating that every plank’s measure is a constant times its width. Moreover, this establishes
that the natural value of “Plank’s Constant”, &, is 2.

§3 GELFAND’S QUESTION

Questions about high-order digits of powers, TABLE P.3, provide a perfect setting for students to
formulate and test numerical conjectures. Here are some “mysterious empirical facts” which can
be found by judicious use of a computer. For a positive z, let (()) denote the high-order non-zero
digit of the base-ten expansion of z. Thus <<P1ank’s Constant>> = 6 and <<ﬁ>> equals 2.

Mysterious observations? Studying the 2-column of TABLE P.3,
2481361251248136125 ...(2")...

one discovers that the nine digits do appear to have frequencies? —and that they are unequal.
Indeed, letting fr(d) denote the frequency of digit d,

1
fr(d) := ]\;gnmﬁ‘{n ‘ 1 <n < N and (2™) = d}‘,

IThe existence of frequencies is not a foregone conclusion. In the sequence of high-order digits (((n)))zozl of all
natural numbers, the digit “1” does not have a frequency, since its upper-density is five times its lower-density.
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the computer suggests that the frequencies decrease steadily as d increases from 1 to 9:
fr(1) ~ .301, fr(2) ~ .176, fr(9) ~ .045 .

The first empirical surprise is that digit d occurs with the same frequency fr(d) in every column of
the table. This, despite the fact that the columns are decidedly different—they all have patterns
which appear in no other column. For example, the sequence “248136” occurs infinitely often in
column 2, yet will never be witnessed by the other columns. Indeed, no sequence of length six
which appears in a column, ever appears in any other column.

Every digit occurs in every row of TABLE P.3, and yet an all-the-same row never appears. This
suggests looking at joint frequencies. Let Fa.:9(d,d,d") be the frequency of rows n which
have d in column 2, digit d’ in column 6 and d” in column 9. Some pairs of columns seem to be
independent —columns 2:3 for instance— in that there is approximate equality

Faus(d, d') ~ fo(d)fe(d").

Yet columns 4 and 5 appear strongly non-independent. Only one digit d ever occurs simultaneously
in columns 2:5. Columns 2:4 don’t have independence, yet columns 3:6 do. But 3:9 do not. And
soon ...

The real startler comes, however, when you vary the seed. Row, 41 is obtained by multiplying
row, by the tuple (2,3,...,9). TABLE P.3 starts with a “zero-th row” of (1,1,...,1). But there
is no reason to use all the same integer—and upon consideration, why even restrict to integers?
We could start with a “zero-th row” (sa,...,sg) of positive real numbers as seeds and then study
frequencies; let the symbol Fril’srln, (d,d") mean the frequency of n for which simultaneously ((sm™)) =
d and ((s'm'™)) = d'.

At first this seems like a waste of time, since the seed appears to have no effect on individual
columns; no matter which of 2,...,9 one takes for the multiplier m, apparently F? (d) = fr(d)
independently of the seed s. But this independence abruptly disappears for joint frequencies. An
energetic computer will discover, for example, the oddity that the mapping

s — F52(3,3) (3.1)
is continuous—but fails to be differentiable at exactly three points in the interval (1,10).

Converting to a dynamical system. The mathematics is simpler if we first just analyze the
statistics of a single column—the 2-column perhaps or, more generally, the m-column for some
fixed positive multiplier m. Effectively we are studying the “multiply map”

TRy = Ry:z— me

applied to an initial seed s; we are following the T-orbit of s, taking the measurement (77 (s)))
along it. Since x and 10z have the same first digit, we might as well identify numbers whose ratio
is a power of 10. Doing this collapses all these half-open intervals,

[,1), [1,10), [10,100),...

10°

together, thus effectively wrapping the positive-reals Ry into a circle. Insofar as our measurements
are concerned, then, the multiply map is just some homeomorphism of a circle.
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The easiest way to identify 10z with x is simply to take logarithms base-ten and then discard
the integer part. Letting ¢ denote this identification and letting K = [0, 1) be the circle as before,
we get this commutative diagram:

H+ L} H+
Jw Jw where () := (10g10 ;z:)mod . (3.2)

Pa
K —

Since the logarithm converts multiplication to addition, transformation p, := ¥ 0T o1~ ! is simply
rotation x — x & « on the circle by a :=log,y(m), where “@” means addition modulo 1. Thus the
high-order digit of a number = is d if and only if ¥(z) is in the half-open interval

I; = [log(d),log(d + 1)) .

(Here, and henceforth, “log” means log;,.) These nine intervals {Id}3:1 partition the circle.

An isomorphism. The underlying transformation for Gelfand’s Question in the case of a single
column, we’ve discovered, is a rigid rotation of a circle—this is the same transformation found
hidden in Poncelet’s theorem. Can this isomorphism be made more explicit?

Yes it can.

The ellipses C and E in FIGURE 1.1 gave rise to a rotation number a and commutative dia-
gram 1.2. Use the ¢ of that diagram to lift the intervals {Id}? to a partition {Jd}? on C, where
Ja = ¢ (1), and let m := 10*,

Effectively ¢! 0 ¢ is an isomorphism from the Gelfand m-system to the Poncelet CE-system:
Any question about the m-column with seed s is mapped to the corresponding question about the
Poncelet-orbit of z := ¢! (@/J(s)) This R-orbit of z lands in intervals

Jagy Jay s Jans ooy Jd, -
precisely so that the high-order digit of sm™ is invariably d,,.

Equidistribution.  Now that we know that the 2-column is isomorphic to the orbit of 0 on
the circle under rotation by log(2), what do we know? Since log(2) is irrational this orbit is
dense, courtesy remark 1.11, and so every digit appears infinitely often in column 2. We now
find ourselves in the embarrassing circumstance of knowing there are integers n where 2" starts
with “9”—without having the foggiest notion of a single one.

However, denseness —a property which ignores the time when points appear in the orbit— is not
sufficient to determine the frequency of “9”, or whether it has a frequency at all. A more refined

“randommness” property is needed: A sequence zq, 21,... in the circle is equidistributed if
1
For any interval I C K: lim —‘{n ‘ 0<n<N&z, € I}‘ = Length(7). (3.3)
N—ooo N

Weyl’s EQUIDISTRIBUTION THEOREM for the circle says that for any irrational a:
For any point z, the sequence z,z § o,z & 2a, ...,z B na,... is equidistributed in K.
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For a multiplier m € {2, ce 9, e,etc.} which is not a rational power of ten, the corresponding
rotation number o = log(m) is irrational. Weyl’s theorem explains the mysterious frequencies fr(d):

fr(d) = Length(I;) = log (%) , ford=1,2,...,09.

So the frequencies are irrational —in fact, transcendental. Weyl’s theorem also explains why these
frequencies do not depend on the seed.

Randomness and Ergodicity. An irrational rotation p is “topologically random” in the sense
that each orbit is dense. Restated, the orbit of any point @ € K hits any non-empty open set U:
There exists n so that a € p~™(U).

An analogue of this, a notion of measure-theoretic “randomness”, is that the orbit of any set A
of positive length hits any other positive-length set U: There exists n so that /\<A N p_"(U)) > 0.
This measure-theoretic property makes sense for any measure-preserving transformation (7': X, pt),
and has this equivalent formulation:

Any T-invariant® set B is —up to a nullset— either empty
or is the whole space. Either B or X \ B is a nullset.

The connection between our irrational rotation p and ergodicity is twofold. On the one hand, an
irrational rotation is ergodic. On the other hand, any ergodic transformation satisfies an abstract
equidistribution theorem, due to Birkhoft, called the POINTWISE ERGODIC THEOREM. This ergodic
theorem 1is sufficiently strong to imply both Weyl’s theorem and —a result we will need shortly— the
KRONECKER-WEYL THEOREM. A formulation of Birkhoff’s theorem appears in the appendix, as
well as a proof that irrational rotations are ergodic.

It is the possibility that a transformation can fail to be ergodic which gives rise to the instability

of frequencies Fr‘:frln,(d, d') as the seeds s and s’ are varied.
Non-equidistribution. When m = 10?/¢ is the multiplier then p = p, is a rational rotation.
Take, for example, @ = 1/3. The p-orbit of any “seed” z € K thus has exactly 3 points. The
observed frequency of a digit d does not remain constant as the seed is varied; for example, the
frequency that the z-orbit hits I, is % for any z € I, but is zero for z € I.

We also notice another failure—that p;/3 is not ergodic. Given any A C K, the set B :=
AUp~1(A)Up2(A) is p-invariant. Taking an A of positive length less than 1/3 gives a non-trivial
invariant set B. This explains lack of constancy for frequencies; the orbit of any seed z € B¢ hits B
with zero frequency and yet the measure of B is positive.

Happily, any transformation can be decomposed into disjoint ergodic transformations. In the
case of rotation by 1/3, write the circle as a disjoint union

K= |_| K, where K. := {c,c@ 3.c® %}, (3.4a)
0<c<1/3

t“Tiinvariant” can be taken to mean either T~ (B) = B, or the superficially weaker statement that the symmetric
difference B A T—1B is a nullset. It is easy to check that if B satisfies the latter invariance, then B can be altered
by a nullset to fulfill the stronger invariance.
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of p-invariant 3-point sets K.. For a point z in the circle, the particular K = K. containing z is
called the ergodic component of =z because, when K is equipped with this p-invariant probability
measure vy,

vi({c}) =vk({c@ 1}) =vk({ca 2}) = é,

then the system (p: K,vg) is ergodic. As K ranges over the ergodic components of p, the mea-
sures vi form a disintegration of arclength measure A\. This is why (3.4) is called the ergodic
decomposition of (p: K, \).

(3.4b)

Joint frequencies. Frequencies Fs,3(d,d’) are measurements made on the direct product of two
“multiply maps” and so ¢xi (see commutative diagram 3.2) carries this system to a rotation of

the torus K% = KxK,
paxps: (2,2) = (2@ a,2' ©F),

where o = log(2) and # = log(3). So F;;;l(d, d') is simply the frequency that the p,xpg-orbit of
(2,2") = (1[)(3),;/}(@’)) hits rectangle IyxIy.

Analogous to the one-dimensional case, if poXxpg 1s “random” —is ergodic— one might expect
this frequency to be the measure of the rectangle, that is, its area fr(d)fr(d'). This, as in Weyl’s
theorem, i1s a statement of equidistribution and is enunciated in the well-known Kronecker-Weyl
theorem.

Real numbers {aq,...,ar} are rat'ionally independent if they are linearly independent over Q;
the only integral solution to Nyay + --- + Npay = 0 is the all-zero Ny = 0, , N1, = 0 solution.
On K*', the L-dimensional torus of L-dimensional volume 1, a sequence of pomts o, T1,... 18
eq’u,zdzstrzbuted if it hits every sub-block I;x...xI; of the torus with frequency equal to the
sub-block’s volume.

KRONECKER-WEYL THEOREM. Numbers 1,aq,...,ay, are rationally independent if and only if
under the action of rotation py,X...Xpqs, on the L-dimensional torus every orbit is equidistributed.
(This is also equivalent to ergodicity of this toral-rotation.)

As an application, since {1, log(2), log(?))} are rationally independent, we have that

Fy3(d,d') =log(1+ 1) log(1+ %),

regardless of the seeds s and s'.

What happens with non-independence? Take, for example, a = log(2) and = log(5). Here, the
equality 2-5 = 10 translates to the non-zero rational relation a4 3 = 1, and so p,xpgs is not ergodic.
To see this, regard the 2-dimensional torus [0,1) x [0,1) as a square. Then the ergodic components
are “wrap-around” diagonals running northwest to southeast on this square; each number ¢ € [0, 1)
gives us a diagonal K. which is p,Xxpg-invariant:

K™ = |_| K, where K, := {(;L’,y) ‘ TPy = c}.

Each diagonal K. is topologically a circle whose ergodic measure A. is simply normalized arclength,

A(A) = Length(A N K.)
‘ " Length(K.) ’

where A C K.
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In this 2:5 case, the system (paxpg: K., A¢) is isomorphic to irrational rotation on the diagonal
“circle” K. by rotation number o (or, equivalently, ).

Weyl’s theorem then asserts that F;’;l (d,d’) is the A -length of the intersection of rectangle IyxI
with the diagonal K, which contains the point (s,s’). This is the diagonal with ¢ := t(s) & ¥(s').
For example, the 2:5 column-pair of TABLE P.3 corresponds to s = s’ = 1 and so ¢ = 0; therefore
K = K. is the main diagonal x + y = 1. It should be easy to figure out the frequency of seeing a
doubled digit (d, d), no?

Scanning the 2 and 5 columns of TABLE P.3 shows that “3” occurs doubled, 2° = 32 and
5° = 3125. It is not surprising that no other digit occurs doubled since, if d # 3, then the main
diagonal does not pass through the square I;xI; and consequently the frequency of (d, d) is zero.
Conversely, if you traverse the main diagonal K by heading southeast, you will enter the I3x[3
square at the point (10g(3), 1— log(?))) and exit the square at (1 — 10g(3),10g(3)). The fraction of
your time spent inside the square was

F:5(3,3) = [1 —log(3)] —log(3) = 1 —log(9),

which is irrational. (By the way, this picture of a northwest to southeast diagonal explains the three points of
non-differentiability of the function g(s) := F, 5 (3, 3) mentioned in (3.1). As the seed s increases, the corresponding
diagonal moves northeast and the length of it within the I3xI3 square varies linearly ezcept when the diagonal passes

over a corner of I3 ><13.)

The general case. What are the ergodic components of toral rotation py,X...Xpa, 7 —it being
clear now that to compute joint-frequencies of the form Fy1::5% | one needs a geometric description
of these ergodic components. The Kronecker-Weyl theorem tells us how, in principle, to do this.
However, computing frequencies for a specific set of «; will require a bit of geometry.

Consider a maximal subset of {1, ..., ar,} which, were “1” included, would comprise a rationally
independent collection; suppose it has M > 1 members. Let G be the closure of the orbit of

(0,.%.,0); in other words, the closure in the L-dimensional torus of tuples

((nal)mod 1 (TLOéQ )mod | EIIIE (naL>mod 1)

as n ranges over the integers. This G will be an M-dimensional subtorus (indeed, a subgroup
of K*I'). So the ergodic components of p,,X...Xpa, are merely the translates of this subtorus.
Consequently, the frequency

Fouumit (dy,....dr)

is the M-dimensional “area” of the cross-section of the block (rectangular parallelepiped) Iz, x ... xI4,
which is sliced by the particular subtorus that contains the point (z1,...,z7). This is the subtorus
G&(z1,...,2L).

Even for the case of three rotation numbers with exactly two being rationally independent,
determining frequencies might be tricky. Here one wants to compute the area of the region which
is the intersection of a plane slicing through a 3-dimensional block. Depending on the tilt of this
plane, the intersection could be a triangle, a quadrilateral, a pentagon or a hexagon.

So we end up by finding another point of commonality among the problems of Poncelet, Tarski
and Gelfand: Existence of a natural invariant measure does not, alas, imply that the measure is
going to be easy to compute ...
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§A  APPENDIX

Here we give a terse history of the three questions, as well some related conundrums. A technical note: In this
article all measures were tacitly Borel measures, and all sets and functions were Borel measurable.

Poncelet’s theorem, history

Jean-Victor Poncelet was an officer of engineers in Napoleon’s army during the invasion of Russia. Like other
invasions of Russia this one failed, and on November eighteenth of 1812, Poncelet was captured in the retreat from
Moscow. During his 1812-1814 captivity, which he later wrote about in PONCELET 1862, he developed the notions
of Projective Geometry which led him to the Closure theorem. (For a fuller history, see BELL 1937.)

Commentary. The idea of using an invariant to prove Poncelet’s theorem goes back to Jacobi and Bertrand,
according to SCHOENBERG 1983, and Schoenberg’s beautiful paper gives an efficient proof using an invariant inte-
gral—which in this context is the same thing as an invariant measure.

Nonetheless, Schoenberg’s proof uses non-elementary notions: The Brouwer fixed-point theorem and facts in
projective geometry concerning the polar line of a point. In contrast, by focusing on an invariant measure for
Poncelet’s transformation, even the small amount of computation in Schoenberg is entirely avoided. This is merely
a change in viewpoint, not a change in proof, yet it has the advantage of yielding a theorem even in the case that the
given pair of ellipses have no circuminscribed polygon, and thereby suggests the link with Gelfand’s question. By
avoiding Brouwer’s theorem, which is non-constructive in nature, one can actually compute the invariant density,
eg. (1.10), and thus in principle determine whether the rotation number is rational so as to ascertain whether a
circuminscribed polygon exists.

An extensive history and “pre-history” of Poncelet’s theorem, as well as several proofs, appear in a paper by Bos,
KERs, OoRrT, RAVEN 1987, a paper which I came upon after this article was written.

There is a connection between the Poncelet-measure determined by confocal ellipses C and E, and the invariant
“billiard measure” of an elliptical billiard table. The ergodic components of the billiard measure of C turn out to be
the 1-parameter family of Poncelet CE-measures obtained by varying E, the inner confocal ellipse. Billiard measure
is defined in a companion article to this one, [KiNG], where it is used to study a billiard question on a table with
cusp at infinity.

Plank Problem, history
Archimedes proved in proposition 3 of Book Il of On the Sphere and the Cylinder, see HEATH 1897, that a plane
orthogonal to a diameter of a sphere cuts the sphere into two regions with areas in the same ratio as the lengths of the
two pieces of the diameter. Since the areas of the sphere and cylinder were known to Archimedes, this proposition
is tantamount to showing that radial projection is area-preserving. I am indebted to C.E. Thompson for indicating
this proposition to me.

Given here was the elementary case of Tarski’s Plank Problem, proposed in 1932. What Tarski had asked was

this:
Suppose a convex compact region D in the plane is covered by countably

many planks. Must the sum of their widths dominate the width of D?

(The width of a shape is the width of the narrowest single plank which covers it.) This problem does not immediately
follow from the disk case, since some convex shapes —the equilateral triangle being a notorious example— have a width
exceeding the diameter of its inscribed circle. Almost 20 years later, Tarski’s problem was solved by an ingenious
argument of THPGER BANG, 1951. The elementary version of Tarski’s problem suggests the following question
which, to my knowledge, is open.

Question A.1 What is the infimum, W(r), of total widths 22021 Width(P,) taken over all systems
{Prn}5° of planks which cover the annulus of outer-radius 1 and inner-radius r?

Gelfand’s Question, history
The “frequencies of {2™))” problem appears on page 37 of AVEZ 1966, where it is attributed to Gelfand.
Weyl’s theorem is usually proved by noting that definition (3.3) of equidistribution is equivalent to this formula-

tion: The sequence xg, 1, ... is equidistributed in the circle K if
1 N-1
For any continuous ¢g: K — C: lim — Z g(zn) = /gd/\ (A.2a)
Nooo N
n=0
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Weyl’s theorem concerns those g for which, for each z, the sequence {z & na}zozo is equidistributed. Since the
set of such g forms a closed subspace (in the supremum-norm) of the space of all continuous functions, the Stone-
Weierstrass theorem tells us that it is enough to check this when g is a group-character, where it is easily verified.

The Pointwise Ergodic Theorem. There is a more general “equidistribution theorem” which applies when T'
is a measure-preserving transformation on probability space (X, 1). In the special case when T is ergodic, Birkhoff’s
theorem states that for any ¢ € L' (i) the limit and equality below exist.

N-1
1
F .e. X: I — Trz) = du . A.2b
or a.e. z € Jim =y (1) /g u (A.2b)
n=0

(The nullset of “bad” z violating equality will generally depend on g; there is no universal full-measure set working
for all functions. An earlier ergodic theorem, convergence in the LZ-norm, was proven by von Neumann.) The
pointwise ergodic theorem is a far-reaching generalization of the Strong Law of Large Numbers (SLLN). It also
quickly implies Weyl’s theorem —that continuous functions g have no bad points— once irrational rotations are shown
to be ergodic. We show that now.

PROPOSITION A.3. Any irrational rotation p = p, is ergodic,
PRrROOF: Suppose p-invariant set B has positive mass. Take a short open interval I in the circle such that
A(I N B) > (L99)A(]).

By the density of the orbit of an endpoint of I, we can find times ki, ...,k such that the translated intervals

M
)\<|_| pkm(l)) > .98

But B = Ule pFm(B) D Ule pFm (I N B). Consequently

p¥m (I) are disjoint, and

M
A(B) > A(pFm(In B
(B2 Apm(InB)
M
> (9NA(p*m (1)) > (.99)(.98) > .97
m=1
Of course this “.97” could have been made as close to 1 as desired, so A(B°) = 0. O

The upshot is that Birkhoff’s theorem simultaneously contains the probabilistic equidistribution of SLLN and the
topological equidistribution of Weyl.

Poncelet-measure is unique. Although we will not go into detail (see for example PETERSEN 1983), ergodicity
and equidistribution ideas answer question 1.12 affirmatively by showing that

Under an irrational rotation p,, arclength X\ is
the unique invariant Borel probability measure.

This gives uniqueness of Poncelet-measure p; when the rotation number «, coming from ellipses C and E, is
irrational. But even in the case when « is rational, pp must still simply be the image, under ¢, of the circle’s
arclength measure: Dilating the inner ellipse E slightly causes the rotation number to vary continuously, and only
requires a small change in the affine map .A. Hence the Poncelet-measure for a CE-pair with rational « is the limit
of Poncelet-measures from nearby irrational rotation numbers, and all these measures are the ¢-image of arclength.

The Kronecker-Weyl theorem. The preceding proposition derived ergodicity of an irrational rotation directly
from the density of every orbit. Exactly the same proof would show that a toral rotation is ergodic, once orbits
are known to be dense. Also analogous to the 1-dimensional case of the circle, ergodicity together with Birkhoff’s
theorem can be used to demonstrate equidistribution, which in the multi-dimensional case is Kronecker-Weyl. Thus
the fundamental idea in proving K-W is to show that rational independence of the rotation numbers implies that
the orbit of the origin is dense.

Let us conclude by proving density in the 2-dimensional case, so as to illustrate how density can be lifted from
the 1-dimensional case.
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WARMUP FOR THE K-W THEOREM. Suppose numbers «, 3,1 are rationally independent. Then under toral-
rotation paxpg, the orbit of (0,0) is dense.

ProoF: Fixing ¢ we show that the (a, 3)-orbit of (0,0) is e-dense. Pick N > 1 such that

o~ S

@,8) = [paxps]™(0,0)

is within e of (0,0) in the torus; this, by the same Pigeon-hole argument used in (1.11). This @ is of the form Na

minus an integer, and likewise for ,/3\ Rational independence implies that (o, E) is not (0,0) and thus

P

the («, 3)-orbit of (0,0) is e-dense in the line
L:={(z,y) ERxR| mé’\: ya}

in the “unwrapped” torus ie., in the plane. Wrapping the plane back up, this line . winds densely around the torus,

since 1ts slope a/E is irrational; this again follows from rational independence. In consequence, the (a, ,é’\)—orbit
of (0,0) is e-dense in the torus, and therefore so is the («, 3)-orbit. O

Final remark. We know the frequency of leading-digit “9” in the doubling sequence 2,4,8,16,32,.... But what
is the frequency of leading-digit “9” in the sequence

2,4, 16,256, 65536, . . . (*)

where —instead of doubling— the next term is always the square of the current term?

Map 1 of diagram 3.2 carries squaring to the map S(z) := 2z (mod 1) on [0,1). This 2-to-1 map, an endomor-
phism of the circle group, preserves Lebesgue measure and is ergodic, and so Birkhoff’s theorem tells us that the
orbit of almost every point z visits each I; interval with Lebesgue frequency. But sequence (*) asks this question
of a specific point, z = log(2). Is log(2) a “bad” point (relative to the I intervals) for Birkhoff’s theorem?

To this day, nobody knows . ..
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