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Abstract. For a transformation T , if the sum of the K-th root of its partial mixing with the K-th

root of its partial rigidity exceeds 1, then the transformation can have no factor isomorphic to a K-fold
cartesian product.

The inspiration for this note is Nat Friedman’s result, [1], that a transformation cannot be
a cartesian product if its partial rigidity and partial mixing sum exactly to one, even along a
subsequence.

Say that transformation T : X → X K-fold splits if T is a K-fold cartesian product S1×· · ·×SK

where none of the Sk live on a 1-point space. [Our context is that of bi-measure preserving maps
of a Lebesgue probability space.] We now define the notions of partial rigidity and mixing. Given
a sequence of integers ~s = {s[k]}∞k=1 going to infinity, define four quantities

m(T ;~s) := inf
A,B

1

µ(A)µ(B)
liminf
k→∞

µ
(

A ∩ T−s[k]B
)

M(T ;~s) := inf
A,B

1

µ(A)µ(B)
limsup
k→∞

µ
(

A ∩ T−s[k]B
)

r(T ;~s) := inf
A

1

µ(A)
liminf
k→∞

µ
(

A ∩ T−s[k]A
)

R(T ;~s) := inf
A

1

µ(A)
limsup
k→∞

µ
(

A ∩ T−s[k]A
)

where the above infimums are taken over all sets A, B ⊂ X of positive measure. When T is
understood, we suppress T and write m(~s) for m(T ;~s). Say that sequence ~n is an (eventual)
subsequence of ~s, written ~n ≺ ~s, if after discarding finitely many terms from ~n the resulting
sequence is an actual subset of ~s.

The quantity m(T ;~s) is called the partial mixing of T along ~s and is also written as mix(T ;~s).
For T , the partial rigidity along ~s is

rig(T ;~s) := sup
~n:~n≺~s

r(T ;~n).

In both the above, when ~s = N we write mix(T ) and rig(T ), respectively.
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Note. If D is any subcollection which is dense (symmetric-difference metric) in the collection of
measurable sets, then none of the four quantities above would change were the infimums computed
over all A, B ∈ D rather than over all measurable A and B.

We will use “stable subsequence ~n ” in the following shorthand: “There exists a stable sub-
sequence ~n ≺ ~s such that Property(~n,~s)” shall mean for any further subsequence ~m ≺ ~n that
Property(~m,~s) holds.

Proposition. Given any transformation T and sequence ~s.

(a) 0 6 m(~s) ≤ M(~s) ≤ 1 and 0 6 r(~s) ≤ R(~s) ≤ 1.
(b) If ~n ≺ ~s then:

m(~n) ≥ m(~s);

M(~n) ≤ M(~s);

r(~n) ≥ r(~s);

R(~n) ≤ R(~s).

(c) If X is not a 1-point space: 1 ≥ M(~s) + r(~s), 1 ≥ m(~s) + R(~s).
(d) There exists a stable subsequence ~n ≺ ~s, such that M(~n) = m(~n) and R(~n) = r(~n).
(e) There exists a stable subsequence ~n ≺ ~s for which r(T ;~n) = rig(T ;~s).
(f) Suppose T is a cartesian product S1 × . . .× SK . Then r(T ;~s) ≥ r(S1;~s) · . . . · r(SK ;~s) and

R(T ;~s) ≤ R(S1;~s) · . . . · R(SK ;~s). Moreover, there exists a stable subsequence ~n ≺ ~s for
which

r(S1 × . . . × SK ;~n) = r(S1;~n) · . . . · r(SK ;~n)

with the parallel assertion for R. The analogous (in)equalities hold when r and R are
replaced by m and M.

Proof of (c). The argument for the second inequality is similar to that of the first and so we argue
the first: In light of µ(A ∩ T−kAc) = µ(A) − µ(A ∩ T−kA), we have that for any non-trivial A

M(~s) ≤ 1

µ(A)µ(Ac)
limsup
k→∞

µ(A ∩ T−s[k]Ac)

=
1

µ(A)µ(Ac)

[

µ(A) − liminf
k→∞

µ(A ∩ T−s[k]A)
]

≤ 1

µ(Ac)

[

1 − r(~s)
]

.

If the space has sets of arbitrarily small positive measure, then send µ(A) → 0 and conclude that
M(~s) ≤ 1 − r(~s). Or, if r(~s) equals zero, we are still done since always M(~s) ≤ 1.

On the other hand, if we cannot send µ(A) to zero then the space is purely atomic and, since
r(~s) > 0, there is a non-trivial atom x ∈ X such that T−s[k]x = x for all large k. Setting A := {x}
and B := X r {x} shows M(~s) to be zero. �

Proof of (d). We prove that M(~n) = m(~n). Given an ε, pick sets A, B so that

liminf
k→∞

µ(A ∩ T−s[k]B) <
[

m(~s) + ε
]

µ(A)µ(B).

Let ~v be a subsequence of ~s such that limk µ(A∩T−v[k]B) exists and equals the above liminf. Thus

M(~v) ≤ m(~s) + ε ≤ m(~v) + ε. (1)
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Now pick some εj ց 0. Use (1) to inductively pick subsequences ~s ⊃ ~v1 ⊃ ~v2 ⊃ · · · such that
M(~vj) ≤ m(~vj) + εj . Define ~n by n[k] := vk[k]. Since ~n is an eventual subsequence of each ~vj

m(~n) ≤ M(~n) ≤ M(~vj) ≤ m(~vj) + εj ≤ m(~n) + εj .

Sending j → ∞ achieves the first equality of (d). Evidently this equality is stable since M and m

move in opposite directions under subsequencing.
A similar argument shows the existence of a subsequence ~m ≺ ~s for which the second equal-

ity, R(~m) = r(~m), holds. Picking an ~n ≺ ~m so that M(~n) = m(~n) gives us both equalities
simultaneously. �

Proof of (e). Let D = {Aj}∞j=1 be a dense collection of sets. Pick εj ց 0 and subsequence ~vj ⊂ ~s

such that
r(~vj) > rig(~s) − εj .

Fix J . Let m := vJ [k] for a k sufficiently large that

∀j < J :
1

µ(Aj)
µ
(

Aj ∩ T−mAj

)

> rig(~s) − εJ .

Define ~n inductively by setting n[J ] := m; at stage J we can choose m sufficiently large that
n[J ] > n[J − 1]. �

Proof of (f). The first inequality follows from the fact that the liminf of a product (of non-negative
numbers) dominates the product of liminfs; the second is analogous.

By dropping to subsequences we can apply (d) iteratively K times to find an ~n ≺ ~s for which

r(S1 × · · · × SK ;~n) ≤ R(S1 × · · · × SK ;~n) ≤ R(S1;~n) · . . . · R(SK ;~n)

= r(S1;~n) · . . . · r(SK ;~n).
(2)

This latter is dominated by r(S1 × · · · × SK ;~n); hence the above inequalities are equalities. Equal-
ity will survive dropping to a subsequence of ~n since all of the (in)equalities of (2) persist. �

Calculus gives the following consequence of convexity.

Convexity. Fix an r ∈ [0, 1] and let E denote the set of K-tuples of real numbers xk ∈ [0, 1] such
that the product x1 ·x2 · . . . ·xK equals r. Then the function f : E → R defined by f(x1, . . . , xK) :=
∏K

1 (1 − xk) takes on a maximum at x1 = x2 = · · · = xK = K
√

r. Hence

[

(1 − x1) · . . . · (1 − xK)
]1/K ≤ 1 − r1/K

for any tuple (x1, . . . , xK) ∈ E.

Splitting Theorem. If T has a factor which K-fold splits then

[rig(T )]1/K + [mix(T )]1/K 6 1.

The inequality persists if the rigidity and mixing are computed along any sequence ~s.

Remark. Given any number ρ ∈ [0, 1] there is, [2], a weak-mixing map S with rig(S) = ρ

and rig(S) + mix(S) = 1. Let T be the K-fold cartesian power of S. By computing the effect
of T on K-dimensional cubes one sees that rig(T ) = [rig(S)]K and mix(T ) = [mix(S)]K . This
shows that the 1 in the righthand side of the theorem cannot be reduced.
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Proof. Since partial mixing and rigidity can only increase under passage to factors we may
assume T itself splits as S1 × · · ·× SK . Fix a sequence ~s. By (e) followed by applying (b) then (d)
to m, we may replace ~s by a subsequence and rewrite the desired conclusion as

[r(~s)]1/K + [M(~s)]1/K ≤ 1.

Properties (e) and (d) are stable and so for any further subsequence ~n ≺ ~s we have r(T ;~n) = r(T ;~s)
and M(T ;~n) = M(T ;~s). Hence applying (f) to r and then to M yields

r(T ;~n) = x1 · x2 · . . . · xK

M(T ;~n) ≤ (1 − x1)(1 − x2) · . . . · (1 − xK)

where xk := r(Sk;~n) and, by (c), M(Sk;~n) ≤ 1 − r(Sk;~n). Thus

[

M(T ;~s)
]1/K ≤ 1 −

[

r(T ;~s)
]1/K

by the convexity fact above. �

For any non-zero n it is an elementary fact, [3; Prop. 1.13], that [rig(T )]2 6 rig(Tn) 6 rig(T )
and mix(Tn) = mix(T ).

Application. Given T , pick K ∈ N smallest such that

[rig(T )]2/K + [mix(T )]1/K > 1.

Then no (non-zero) power of T can K-fold split. So if

rig(T ) +
√

mix(T ) > 1

then no power of T splits.
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