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ABSTRACT. For a transformation T, if the sum of the K-th root of its partial mixing with the K-th
root of its partial rigidity exceeds 1, then the transformation can have no factor isomorphic to a K-fold
cartesian product.

The inspiration for this note is Nat Friedman’s result, [1], that a transformation cannot be
a cartesian product if its partial rigidity and partial mixing sum exactly to one, even along a
subsequence.

Say that transformation 7: X — X K-fold splits if T' is a K-fold cartesian product S7 x- - - xSk
where none of the Sy live on a 1-point space. [Our context is that of bi-measure preserving maps
of a Lebesgue probability space.] We now define the notions of partial rigidity and mixing. Given
a sequence of integers § = {s[k]}?2, going to infinity, define four quantities
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where the above infimums are taken over all sets A, B C X of positive measure. When T is
understood, we suppress 7' and write m(s) for m(7;§). Say that sequence 7 is an (eventual)
subsequence of §, written 7 < s, if after discarding finitely many terms from 7 the resulting
sequence is an actual subset of §.

The quantity m(7T’; §) is called the partial mixing of T' along 5 and is also written as mix(7’; 3).
For T', the partial rigidity along § is

rig(T'; §) = sup r(T;).
i<

In both the above, when §= N we write mix(7") and rig(7"), respectively.
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Note. If D is any subcollection which is dense (symmetric-difference metric) in the collection of
measurable sets, then none of the four quantities above would change were the infimums computed
over all A, B € D rather than over all measurable A and B.

We will use “stable subsequence 77” in the following shorthand: “There exists a stable sub-
sequence T < § such that Property(7,§)” shall mean for any further subsequence m < 7 that
Property(ni, §) holds.

PROPOSITION. Given any transformation T and sequence S.
(a) 0<m(5) <M(5) <1 and 0<r(5) <R(s) <1.
(b) If i < § then:

M(7)

(c¢) If X is not a 1-point space: 1> M(S) + r(5), 1> m(5) + R(3).

(d) There exists a stable subsequence 7i < §, such that M(ii) = m(7i) and R(7) = r(7).
(e) There exists a stable subsequence 1 < § for which r(T'; 1) = rig(T’; 5).

()

Suppose T is a cartesian product Sy X ... x Sk. Then r(T;3) > r(51;5) ... -r(Sk;§) and
R(T;3) < R(S51;8) - ... - R(Sk; §). Moreover, there exists a stable subsequence i < § for
which

I‘(Sl X ... XSK;ﬁ) :r(Sl;ﬁ)-...-r(SK;ﬁ)

with the parallel assertion for R. The analogous (in)equalities hold when r and R are
replaced by m and M.

Proof of (¢). The argument for the second inequality is similar to that of the first and so we argue
the first: In light of u(ANT % A¢) = u(A) — u(ANT~*A), we have that for any non-trivial A

1
M(5) < —— limsup (AN T 5kl 4¢
)= agatan e )
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1
< (A% [1—x(3)].

If the space has sets of arbitrarily small positive measure, then send p(A) — 0 and conclude that
M(5) <1 —r(5). Or, if r(5) equals zero, we are still done since always M(S5) < 1.

On the other hand, if we cannot send u(A) to zero then the space is purely atomic and, since
r(5) > 0, there is a non-trivial atom = € X such that T—*Flz =  for all large k. Setting A = {x}
and B := X \ {x} shows M(S) to be zero. ¢

Proof of (d). We prove that M(7) = m(77). Given an ¢, pick sets A, B so that

liminf (AN T~*¥ B) < [m(8) + &] u(A)u(B).

k—o0
Let # be a subsequence of §such that limy, u(ANT V¥ B) exists and equals the above liminf. Thus

M(7) < m(5) +e < m(?) +e. (1)
Contemporary Mathematics: Measure and Measurable Dynamics, AMS (1989), vol. 94, 171-175.



An obstruction to K-fold splitting 3

Now pick some €; N\, 0. Use (1) to inductively pick subsequences § D v D 03 D --- such that
M(v;) < m(v;) + €. Define 7@ by n[k] = vi[k]. Since 77 is an eventual subsequence of each v}

m(77) < M(77) < M(vj) < m(vj) +¢; < m(ii) +¢;.

Sending j — oo achieves the first equality of (d). Evidently this equality is stable since M and m
move in opposite directions under subsequencing.

A similar argument shows the existence of a subsequence m < § for which the second equal-
ity, R(m) = r(m), holds. Picking an @7 < m so that M(77) = m(7) gives us both equalities
simultaneously. ¢
Proof of (e). Let D = {A;}32, be a dense collection of sets. Pick £; \, 0 and subsequence v; C &
such that

r(v;) > rig(s) — ¢;.
Fix J. Let m = v;[k] for a k sufficiently large that

Vi < J: p(A; NT™™A;) > rig(s) — .

1
1(4;)
Define 7 inductively by setting n[J] = m; at stage J we can choose m sufficiently large that
nlJ] > n[J —1]. ¢

Proof of (f). The first inequality follows from the fact that the liminf of a product (of non-negative
numbers) dominates the product of liminfs; the second is analogous.

By dropping to subsequences we can apply (d) iteratively K times to find an 77 < § for which
I‘(Sl X X SK;ﬁ) < R(Sl X X SK;ﬁ) < R(Sl,ﬁ) : R(S}gﬁ) 9
=r(Sy;7) ... -r(Sk;7). @)

This latter is dominated by r(S7 X - -+ x Sk;7); hence the above inequalities are equalities. Equal-
ity will survive dropping to a subsequence of 7 since all of the (in)equalities of (2) persist. ¢

Calculus gives the following consequence of convexity.

CoNveEXITY. Fix anr € [0,1] and let E denote the set of K-tuples of real numbers xj, € [0, 1] such
that the product x1-x5-...-xx equals r. Then the function f: E' — R defined by f(x1,...,2k) =

H{{(l — xp) takes on a maximum at x1 = o = --- = xx = X/r. Hence
[(A—a1)-...-(1—ag)] N <1 = VK
for any tuple (z1,...,zx) € E.
SPLITTING THEOREM. IfT has a factor which K-fold splits then
rig(T)] /% + [mix(T)]/% < 1.
The inequality persists if the rigidity and mixing are computed along any sequence S.

Remark. Given any number p € [0, 1] there is, [2], a weak-mixing map S with rig(S) = p
and rig(S) + mix(S) = 1. Let T be the K-fold cartesian power of S. By computing the effect
of T on K-dimensional cubes one sees that rig(T) = [rig(9)]¥ and mix(T) = [mix(S)]*. This
shows that the 1 in the righthand side of the theorem cannot be reduced.
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PROOF. Since partial mixing and rigidity can only increase under passage to factors we may
assume T itself splits as S; x - -+ x Sk. Fix a sequence §. By (e) followed by applying (b) then (d)
to m, we may replace § by a subsequence and rewrite the desired conclusion as

r(&)Y + M)V < 1.

Properties (e) and (d) are stable and so for any further subsequence 7 < §we have r(7T';77) = r(T; §)
and M(T';7) = M(T; §). Hence applying (f) to r and then to M yields

(T,ﬁ): Y I 1) °g
M(T;7) <(1—z1)(1—22)...- (1 —zk)
where zy == r(Sk;7) and, by (c), M(Sk;7) <1 —r(Sk; ). Thus

l/K 1/K

[M(T; 5)] — [x(T;5)]

by the convexity fact above. ¢

For any non-zero n it is an elementary fact, [3; Prop. 1.13], that [rig(T)]* < rig(T™) < rig(7T)
and mix(7T") = mix(7T).

APPLICATION. Given T, pick K € N smallest such that
[rig(T)]% ¥ + [mix(T)]/ ¥ > 1.
Then no (non-zero) power of T' can K-fold split. So if
rig(T) + /mix(T) > 1
then no power of T splits.
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