Sums of Two Squares and Four Squares
Jonathan L.F. King, squash@ufl.edu
9 August, 2018 (at 11:23)

A lemma from LBolt
To compute \(G := \text{GCD}(73, 27) \) and Bézout multipliers \(S, T \) s.t. \(G = S \cdot 73 + T \cdot 27 \), a particular tabular way of laying out the Euclidean Algorithm I call the lightning bolt or LBolt table, because the update rule can be drawn so as to resemble a lightning bolt.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(r_n)</th>
<th>(q_n)</th>
<th>(s_n)</th>
<th>(t_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>73</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 1 is shown above. At stage \(n \), we compute remainder \(r_{n+1} \) and quotient \(q_n \) so that

1.1: \(r_{n+1} = r_{n-1} - q_n r_n \)

In (1.1), replace “\(r \)” by “\(s \)” to compute \(s_{n+1} \). Then replace “\(r \)” by “\(t \)” to compute \(t_{n+1} \). Inductively,

1.2: \(r_n = 73 s_n + 27 t_n \)

for each \(n \). Continue until some \(r_{L+1} = 0 \); then \(L \) is \(G \). Hence \(S := s_L \) and \(T := t_L \) are particular Bézout multipliers, satisfying \(G = 73 S + 27 T \), a linear combination. Below, \(L \) equals 6.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(r_n)</th>
<th>(q_n)</th>
<th>(s_n)</th>
<th>(t_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>73</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3: \(t_n \land t_{n-1} \land r_{n+1} = r_{n+1} - q_n r_n \)

Note \(r_n t_{n+1} + t_n t_{n+1} = r_n - r_n^2 q_n \). Thus \(r_n t_{n+1} + t_n t_{n+1} \) equals

\[\text{LHS} \left(t_{n+1} \right) - \text{LHS} \left(t_n \right) \cdot q_n, \]

which is \(0 \). Hence \(t_{n+1} \).

Whoa! Need to type the argument that \(| r_n | < \sqrt{T} \), then \((r_n, t_n) \) is a SOTS decomp of \(T \).

RONO: Root-Of-Negative-One
W.r.t a posint \(T \), an integer \(R \) is an \(T \)-rono, a “(square) Root Of Negative One”, if

\[R^2 \equiv_T -1. \]

Say that \(T \) is rono-ish if \(T \) is a posint that has a rono. I.e, 13 is rono-ish since \(5^2 = 25 \equiv_{13} -1 \).

2: Prop’n. A posint \(T \) has a rono IFF \(T \) has form \(B \) or \(2B \), where \(B \) is a product of 4Pos primes.
Pf of (⇒). A \(\mathcal{T} \)-rono \(\mathcal{R} \) is a rono w.r.t each factor of \(\mathcal{T} \). But 4 has no rono, so can’t be a factor of \(\mathcal{T} \). And each \(4 \text{NEG} \) prime has no rono, courtesy \(\text{LSThm.}^{\dagger} \)

Pf of (⇐). If \(J_1 \perp J_2 \) are each rono-ish, then the product \(J_1 \cdot J_2 \) has a rono, thanks to \(\text{CRThm.} \). Since 2 is rono-ish, we only need prove:

2a: Suppose \(\mathcal{P} \) is a \(4 \text{POS} \) prime. For each natnum \(k \), then, \(M := \mathcal{P}^k \) has a rono.

WLOG, \(k \geq 1 \). Courtesy the \(\text{Primitive-root Theo-} \)rem,\(^\ddagger\) the group \(\langle \Phi(M), \cdot, 1 \rangle \) is cyclic. It has order

\[\varphi(M) = \mathcal{P}^{k-1} \cdot [\mathcal{P} - 1] =: \mathcal{T}. \]

Letting \(g \) be an \(\mathcal{M} \)-primroot, we have that \(g^{\mathcal{T}/2} \) equals -1. And \(\mathcal{T} \) is divisible by 4 (since \(\mathcal{P} - 1 \) is) so negative 1 has sqroots; namely, \(g^{\pm \mathcal{T}/4} \).

Sums of Two Squares

A posint \(T \) is a \(\text{SOTS} \) if there exist \(x, y \in \mathbb{Z} \) with

\[x^2 + y^2 = T. \]

Write \((x, y) \sim T \) to indicate (\#) and that \(T \) is a posint. To indicate this \(and \) that \(x \perp y \), write

\[(x, y) \perp \sim T. \]

Some pair in \((T, x, y) \) is coprime IFF every pair is. Call \(T \) \(\text{coprime-SOTS} \) or just \(\text{cop-SOTS} \) if there exists a pair \((x, y) \perp \sim T \). Finally, \(T \) is \(\text{strictly cop-SOTS} \) if \(T \) is SOTS and every SOTS decomposition \(T = x^2 + y^2 \) has \(x \perp y \).

Note that 8 is SOTS \([8 = 4+4]\), but not cop-SOTS. In contrast, 25 is cop-SOTS \([25 = 9+16]\) but \(\text{not strictly} \) cop-SOTS, since \(25 = 0^2 + 5^2 \). Finally, \(13 = 4 + 9 \) is \(\text{strictly} \) cop-SOTS, since that is its only SOTS decomposition.

\(^\dagger\)The Legendre-Symbol Thm. Use CRT for the Chinese Remainder Thm. An integer \(N \) is \(4 \text{POS} \) if \(N \equiv_4 1 \). And \(N \) is \(4 \text{NEG} \) if \(N \equiv_4 -1 \).

\(^\ddagger\)Alternatively, thm (10†) shows the existence of an \(M \)-rono.
Thus there are distinct points whose distance (Why?) is \(\leq S \). I.e., there are indices \(0 \leq i < j \leq S \), with

\[
S \geq d(j\mathcal{R},i\mathcal{R}) = \langle k\mathcal{R} \rangle =: x,
\]

where \(k := j - i \), and therefore \(k \in [1..S] \).

Consequently, \(0 < x^2 + k^2 \leq 2S^2 < 2P \). And, as above, \(x^2 + k^2 \equiv -k^2 + k^2 = 0 \). ♦

Melding. Is SOTS sealed under multiplication? If

\[[\alpha^2 + \beta^2] \cdot [x^2 + y^2] = \mu^2 + \nu^2, \]

where we have integer-valued formulas for \(\mu \) and \(\nu \), then “Yes!” And indeed, these definitions work:

\[
\mu := \alpha x - \beta y \quad \text{and} \quad \nu := \beta x + \alpha y.
\]

We have melded \((\alpha,\beta)\) with \((x,y)\), getting new pair \((\mu,\nu)\). That is,

\[
\text{Meld}((\alpha,\beta),(x,y)) =: (\mu,\nu), \quad \text{defined in (4b)}.
\]

Motivation?: Multiplying scaled rotation-matrices,

\[
\begin{bmatrix}
\alpha & -\beta \\
\beta & \alpha
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \begin{bmatrix}
\mu \\
\nu
\end{bmatrix},
\]

certainly gives another scaled rotation-matrix. Using (4c) to define \(\mu \) and \(\nu \), gives (4b). And taking determinants in (4c), hands us (4a). [Equivalently, view \((\alpha,\beta)\) as complex number \(\alpha + \beta i \), then multiply.]

Melding is sometimes conveniently written as an infix operator:

\[
(\alpha,\beta) \ M (x,y) := \text{Meld}((\alpha,\beta),(x,y)).
\]

Easily, operator \(M \) is commutative and associative.

Full meld. To normalize an intpair \((\alpha,\beta)\) means:

Replace \(\alpha \) by \(|\alpha| \) and \(\beta \) by \(|\beta| \). Then, if need be, exchange \(\alpha,\beta \) so that now \(\alpha \leq \beta \).

For example, the normalized version of \((-6,5)\) and of \((-5,-6)\), is \((5,6)\).

Define the **full meld** of pairs to be

\[
(\alpha,\beta) \ F (x,y) := \text{Nrmlize}((\alpha,\beta) \ M (x,y)).
\]

E.g.,

\[
(2,1) \ M (-3,4) = (-10, 5), \quad \text{but} \quad (2,1) \ F (-3,4) = (5, 10).
\]

Easily, \(F \) is commutative. **Exer 4d:** Prove or CEX: Operatorname \(F \) is associative.
Pf of Uniqueness of prime-SOTS. [Use \(\equiv \) for \(\equiv_p \), and \(\langle \cdot \rangle \) for \(\langle \cdot \rangle_p \).] WLOG \(P \) is odd. Consider two decompositions

\[\alpha^2 + \beta^2 = P = x^2 + y^2, \]

\[\ast: \quad \text{with } \alpha, \beta, x, y \in [1..\sqrt{P}). \]

Taking (**) mod-\(P \) implies \(\langle \alpha/\beta \rangle^2 \equiv -1 \). In particular, \(\langle \alpha/\beta \rangle \) does not equal its own reciprocal, so \(\langle \beta/\alpha \rangle \) is the other [\(P \) is prime] sqroot of -1. Also \(\langle x/y \rangle \) and \(\langle y/x \rangle \) are the two sqroots of -1. So WLOG, \(\langle x/y \rangle = \langle \beta/\alpha \rangle \). I.e,

\[\mu := \alpha x - \beta y \equiv 0. \]

Our (**) implies \(0 < \alpha x < P \). Thus \(-P < \mu < P \), so \(\mu = 0 \). Thus \(\alpha x = \beta y \).

Melding the two SOTS decompositions (**) by letting \(\nu := \beta x + \alpha y \), says that

\[P^2 = \mu^2 + \nu^2 \equiv \nu^2, \]

so \(\nu = P \), since they're both positive. Thus

\[\vdash: \quad \alpha x = \beta y \quad \text{and} \]

\[\vdash: \quad P = \beta x + \alpha y. \]

Consider a prime \(q \vdash \alpha \), and write \(q^n \vdash \alpha \). If \(q^n \) fails to divide \(y \), then \(q \vdash \beta \), so \(q \vdash P \), hence \(q = P \). But \(x, y \geq 1 \) forces \(\nmid \), since RhS(\[\vdash \]) \(\geq 2P \). Hence \(q^n \vdash y \).

This applies to every prime dividing \(\alpha \); thus \(\alpha \vdash y \). This argument applies in reverse, hence \(\alpha \vdash y \). Thus \(\alpha = y \), since both are positive. Consequently, the two decompositions are the same.

5: Fermat SOTS Thm. A posint \(T \) is SOTS iff

Every 4NEG prime \(P \vdash T \) occurs to an even power in \(T \).

\[\implies \]

Pf of \((\Rightarrow)\).

Pf of \((\Leftarrow)\).

The Setting for coprime-SOTS

We prove several lemmas with a common setting. We have posints \(\Omega \) and \(T \) as well as integers

\[\alpha^2 + \beta^2 = \Omega; \]

\[x^2 + y^2 = T; \]

S1:

\[(\mu, \nu) := \text{Meld}((\alpha, \beta), (x, y)); \]

\[(m, n) := \text{Meld}((\beta, \alpha), (x, y)). \]

6: Lemma. Consider (S1), and a prime \(P \) which divides \(\gcd(\mu, \nu) \). Then

\[\vdash: \quad P \vdash [\Omega \text{ or } \gcd(x, y)], \quad \text{and} \]

\[\vdash: \quad P \vdash [\gcd(\alpha, \beta) \text{ or } T]. \]

Proof. Well, \(P \) divides \(\mu\alpha + \nu\beta \), which by (S1) equals

\[\alpha x\alpha + \beta x\beta = [\alpha^2 + \beta^2]. x. \]

I.e, \(P \vdash \Omega \). By symmetry, \(P \vdash \Omega \). So if \(P \nmid \Omega \), then \(P \) divides both \(x \) and \(y \).

We have established (6\[\vdash \]). Symmetry gives (6\[\vdash \]).

7: Corollary. Suppose \((\alpha, \beta) \nmid \Omega \) and \((x, y) \nmid T \). If \(\Omega \perp T \), then

\[\text{Meld}((\alpha, \beta), (x, y)) \nmid \Omega T. \]

8: Both-melds Lemma. Assume (S1), and that some oddprime \(P \) divides each of \(\mu, \nu, m, n \). Then:

9: Either \(P \vdash \gcd(\alpha, \beta) \) or \(P \vdash \gcd(x, y) \).

Pf. By hyp., \(P \vdash [\mu^2 + \nu^2] \equiv \Omega T \). I.e, \(P \vdash \Omega T \). Note

\[4b': \quad m = \beta x - \alpha y \quad \text{and} \]

\[n = \alpha x + \beta y. \]

And \(P \) divides \(\nu^2 + n^2 \equiv \Omega T + 4\alpha \beta xy \). But \(P \neq 2 \), so \(P \vdash \alpha \beta xy \). Courtesy (\(\ast \)), then, WLOG

\[P \vdash \alpha. \]

So to establish (9), WLOG \(P \vdash \beta \). Now (6\[\vdash \]) gives us

\[P \vdash T. \]
And $T = x^2 + y^2$. So if we can prove that

\[\text{Goal: } P \nmid x, \]

then necessarily $P \nmid y$. Now (9) will follow.

By hypothesis, P divides ν and m. Consequently, P divides $\nu^2 + m^2 \equiv 2[\beta^2 x^2 + \alpha^2 y^2]$. Therefore,

\[P \mid [\beta^2 x^2 + \alpha^2 y^2]. \]

This, together with $P \mid \alpha$, produces $[P \mid \beta x]$. But $P \nmid \beta$. Thus (Goal).

\[\blacklozenge \]

Application. For an oddprime P, we like to know that each power, P^k, is coprime-SOTS. We get this by inducting \heartsuit on k, using the next theorem. It says, given a couple of coprime-SOTS decomps, that at least one of their two melds will be a coprime-SOTS decompo-

\[10: \text{Good-meld Thm. } \] Suppose

\[*= (\alpha, \beta) \dashv \Omega \quad \text{and} \quad (x, y) \dashv T, \]

where Ω and T are powers of an oddprime P. Then

At least one of Meld\((\alpha, \beta), (x, y)\) and

\[10\dagger: \quad \text{Meld\(((\beta, \alpha), (x, y))\) is a coprime-SOTS de-
\]

composition of ΩT.

Consequently, by inducting on the below k,

\[10\ddagger: \quad \text{For each prime } P \equiv 1 \text{ and each natnum } k, \]

the power P^k is coprime-SOTS.

\[\blacklozenge \]

Proof. Since Ω and T are powers-of-P, the only way both melds could fail is if P divides each of μ, ν, m, n. But (9) contradicts ($*$).

As for (10\ddagger), use (3) for the $k=1$ case. And use (10\dagger) for the induction on k.

\[\blacklozenge \]
Sums of FOUR squares

4Square Notation. Below, a tuple x means the 4-tuple (x_1, x_2, x_3, x_4) of integers. Use $[x]^2$ for the sum $\sum_{j=1}^{4} [x_j]^2$.

11: Propn. For oddprime P, there exists tuple x and “multiplier” $M \in [1..P]$ s.t. $[x]^2 = MP$.

Prelim. Let NQR and QR mean mod-P, use \equiv for \equiv_p, and let $H := \frac{P-1}{2}$.

Pf. Since each 4Pos P is SOTS, WLOGGenerality $P \in 4Neg$. Take $\beta \in \mathbb{Z}_+$ smallest st. $\beta \in \text{NQR}$; thus $\beta \geq 2$. Since $-1 \in \text{NQR}$, it follows that $-\beta \in \text{Q}$; so there exists $x \in [1..H]$ with $x^2 \equiv -\beta$.

Recall $\beta - 1 \geq 1$; thus $\beta - 1 \in \text{QR}$, since β was the smallest non-QR. So $\exists y \in [1..H]$ with $y^2 \equiv \beta - 1$.

Summing,

\[
0 < 1 + x^2 + y^2 < 1 + \left(\frac{P^2}{2}\right) + \left(\frac{P^2}{2}\right) < 1 + \frac{P^2}{2} < P^2.
\]

OTOHand, $1 + x^2 + y^2 \equiv 1 - \beta + [\beta - 1] = 0$.

Consequently, $1 + x^2 + y^2$ equals MP for some positn $M < P$. And $1 + x^2 + y^2$ is a sum of three [hence four] squares.

12: Euler’s four-square identity. Suppose β and x are tuples. Then this y

\[
y_1 := \beta x_1 + \beta x_2 + \beta x_3 + \beta x_4
\]

\[
y_2 := -\beta x_1 + \beta x_2 - \beta x_3 + \beta x_4
\]

\[
y_3 := -\beta x_1 - \beta x_2 + \beta x_3 + \beta x_4
\]

\[
y_4 := -\beta x_1 - \beta x_2 - \beta x_3 + \beta x_4
\]

is a tuple for which $[y]^2 = [\beta]^2 \cdot [x]^2$.

Now suppose M is a positn st. $\beta_j \equiv M x_j$ for all j. Then each of y_2, y_3, y_4 is $\equiv \beta M$.

Proof. Verifying $[y]^2 = [\beta]^2 \cdot [x]^2$ can be done tediously, or by using the norm on the Quaternions.

As for looking mod M, note that the sum of the first two terms of y_2 is mod-M congruent to

\[-x_1 x_2 + x_2 x_1 \equiv M 0;
\]

ditto the last two terms. And ditto for y_3 and y_4.

13: 4Square Thm (Lagrange). Each natnum T is a sum of 4 squares.

Reduction. By factoring T into primes, write each prime as a 4Sqr, then BigMeld the decompositions. So WLOG T is prime. Since 2 and 4Pos are SOTS and SOTS is 4Sqr– WLOG T is a 4Neg prime.

Proof: 4Neg prime P is 4Sqr. From (11), take x and M with $[x]^2 = MP$. WLOG $M \geq 2$. An Infinite Descent argument will give us our thm, if we can produce a new tuple z and multiplier $K \in [1..M]$ such that $[z]^2 = KP$.

Case: M is even Since M is even, the number of odd entries in x must be even. So WLOG $x_1 \equiv x_2$ and $x_3 \equiv x_4$. Thus these are integers:

\[
z_1 := \frac{1}{2}[x_1 + x_2], \quad z_3 := \frac{1}{2}[x_3 + x_4],
\]

\[
z_2 := \frac{1}{2}[x_1 - x_2], \quad z_4 := \frac{1}{2}[x_3 - x_4].
\]

Due to cancelling of cross-terms, $[z]^2 = \frac{1}{2}[x]^2 = M^2 P$.

Case: M is odd Thus $M \geq 3$. Taking symmetric-residues mod-M, let $\beta_j := (x_j)_M$ and thus define a tuple β.

Evidently

\[
[\beta]^2 \equiv_M [x]^2 \equiv_M 0,
\]

so there is a natnum K with $[\beta]^2 = KM$.

Could each β_j be zero? Well, if M divided each x_j, then $M^2 \cdot [x]^2 = MP$. So $M \mid P$, contradicting that $M \in [2..P]$. Thus $K \geq 1$. To show that $K < M$, note we have strict inequality $|\beta_j| < \frac{M}{2}$, since M is odd. Thus

\[
[\beta]^2 < 4 \cdot \frac{M^2}{4} = M \cdot M.
\]

So our task is to produce a tuple z st. $[z]^2 = KP$.

BigMelding. Define y by (12a). Courtesy (12), each of y_2, y_3, y_4 is $\equiv_M 0$. And

\[
y_1 \equiv_M [x]^2 = MP \equiv_M 0.
\]

Thus $z := \frac{1}{M^2} y$ is an integer-tuple. Moreover

\[
[z]^2 = \frac{1}{M^2} \cdot [\beta]^2 \cdot [x]^2
\]

\[
= \frac{1}{M^2} \cdot KM \cdot MP = KP.
\]

Now ain’t that Nifty!

Filename: Problems/NumberTheory/sots-4sqr.latex
SOTS to Dirichlet

Krishna Alladi and George Andrews sketched to me (over coffee) a proof of a special case of Dirichlet’s theorem on Arithmetic Progressions. It shows that $\mathcal{P} := 4\mathbb{Z} + 1$ has infinitely many primes. (They don’t know the author of the proof.) The tool we need is

Fix a SOTS N, and let q be the product of all the 4NEG primes (with multiplicity) that divide N. Then q is a perfect square.

I.e., each 4NEG prime dividing a SOTS must divide it to an even power.

Producing a new 4Pos prime. Given a finite multiset S of 4Pos primes, we will produce a new 4Pos prime. Define

$$\sigma := \prod(S) \quad \text{and} \quad N := 1^2 + [2\sigma]^2 = 1 + 4\sigma^2.$$

Every divisor of σ is coprime to N, so ISTShow that N has a 4Pos prime-divisor. FTSOC, suppose every prime-divisor of N is 4NEG. By (14), then, N is a perfect square. Hence N and $4\sigma^2$ are squares differing by 1. But the the only such pair is $(1, 0)$. Yet $4\sigma^2$ is not zero, since $\sigma \geq \prod(\emptyset) = 1$, so $4\sigma^2 \geq 4$. ♦