RREF is unique

Jonathan L.F. King University of Florida, Gainesville FL 32611-2082, USA squash@ufl.edu Webpage http://squash.1gainesville.com/ 23 September, 2017 (at 14:34)

1: RREF Uniqueness Thm. Consider two matrices A and B in RREF, having the same dimensions and over the same field **F**. If $A \stackrel{r}{\sim} B$ [row-equiv.] then A = B. \Diamond

Proof. FTSOContradiction, $^{\heartsuit 1}$ suppose $A \neq B$. Let $\alpha(j)$ denote the j^{th} column of A; ditto $\beta(j)$

for B. Take index K smallest st. $\alpha(K) \neq \beta(K)$.

Let P denote the number of pivot columns that A, hence B (Exer: Why?), has to the left of column-K. Write the pivot-positions as

$$(1, c_1), (2, c_2), \ldots, (P, c_P)$$

where, of course, $c_1 < \cdots < c_P$.

Case: Column $\alpha(K)$ is a non-pivot column

Then $\alpha(K)$ has form $\begin{bmatrix} x_1 \\ \vdots \\ x_P \\ 0 \\ \vdots \\ 0 \end{bmatrix}$. Thus column $\alpha(K)$ is a

linear-combination of the pivot-columns to his left, namely $_{\scriptscriptstyle D}$

$$\alpha(K) = \sum_{p=1}^{P} x_p \cdot \alpha(c_p).$$

But row-equivalence *preserves* linear relations among columns, $^{\bigcirc 2}$ hence

$$\boldsymbol{\beta}(K) = \sum_{p=1}^{P} x_p \cdot \boldsymbol{\beta}(c_p).$$

But to the left of column-K, matrices A and B agree. For each index j < K, consequently, $\alpha(j) = \beta(j)$. In particular, each $\alpha(c_p) = \beta(c_p)$. Thus

$$\boldsymbol{\beta}(K) = \sum_{p=1}^{P} x_p \cdot \boldsymbol{\alpha}(c_p) \stackrel{\text{note}}{=} \boldsymbol{\alpha}(K),$$

contradicting that $\alpha(K)$ is unequal to $\beta(K)$.

Case: Column $\alpha(K)$ is a pivot-column Since the above argument also applies to matrix B, column $\beta(K)$ must itself be a pivot-column (of B, of course).

As $\alpha(K)$ is a pivot-column with P many pivots to its left, necessarily our $\alpha(K)$ equals the transpose of

$$\left[\overbrace{0 \dots 0}^{P \text{ many}} 1 \ 0 \dots 0 \right].$$

But column $\beta(K)$ is also a pivot column, and it also has P many pivots to *its* left. So $\beta(K)$ equals (*), hence equals $\alpha(K)$; again a contradiction.

Filename: Problems/Algebra/LinearAlg/rref-unique.latex As of: Friday 05Feb2016. Typeset: 23Sep2017 at 14:34.

 $^{^{\}bigcirc 1}$ Another approach is induction from left-to-right on the columns, making for a more esthetic proof, but slightly longer. $^{\bigcirc 2}$ That is to say, LNul(A) = LNul(B).