Gauss’s Quadratic Reciprocity Theorem
: NumThy

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/
27 July, 2018 (at 21:40)

1: Nomenclature. For odd \(D \), use \(H_D \) to mean \(\frac{D-1}{2} \).
\((\text{The } H \text{ is to suggest “Half”}) \)
In the sequel, \(p \) is odd prime and \(S \perp p \) is the “stride-length”; we will walk around the circumference \(= p \)
circle using strides of length \(S \).
Use \(H := H_p \) and \(\langle x \rangle := \langle x \rangle_p \) for the symmetric residue of integer \(x \) modulo \(p \); so \(\langle x \rangle \) is in \([-H..H] \).
Let \(\equiv \) mean \(\equiv_p \).
Let \(\mathcal{G} := \mathcal{G}_p(S) \) be the set of indices \(\ell \in [1..H] \) such that \(\langle \ell \cdot S \rangle_p \) is negative. Letting \(\mathcal{P} \) be the indices with \(\langle \ell \cdot S \rangle \) Positive, we have that (disjointly)
\[
\mathcal{G} \cup \mathcal{P} = [1..H]. \quad (\text{The “Time” set.})
\]
Finally, use \(N := N_p(S) \) for the number of “negative” indices; \(N := \# \mathcal{G} \).
\[\square \]

2: Prop’n. Fix an \(S \perp p \), with notation from (1). Then the mapping \(\langle \text{absolute-value of symm-residue} \rangle \)
\[
\ell \mapsto |\langle \ell \cdot S \rangle|,
\]
is a permutation of \([1..H] \). Mapping \(\ell \mapsto \langle \ell \cdot S \rangle \) is a “permutation up to sign” of \([1..H] \).
\[\diamond \]

Proof. Given indices \(1 \leq k \leq \ell \leq H \), we want that either equality \(\mp \langle k \cdot S \rangle = \langle \ell \cdot S \rangle \) forces \(k = \ell \).
For either choice of sign in \(\mp \), note that
\[
\mp \langle k \cdot S \rangle = \langle \ell \cdot S \rangle \iff 0 \equiv [\ell \pm k] \cdot S \iff 0 \equiv \ell \pm k,
\]
since \(S \perp p \). Thus
\[
0 \leq \ell \pm k \leq 2H < p.
\]
Together with \(\ell \pm k \equiv 0 \), this forces \(\ell \pm k \) to actually be zero. Thus the “\(\pm \)” is a minus sign, and \(\ell = k \).
\[\diamond \]

3: Gauss Lemma. Fix an odd prime \(p \) and integer \(S \perp p \). Then the Legendre symbol \(\langle S \rangle_p \) satisfies
\[
\langle S \rangle_p = [-1]^N_p.
\]
\[\diamond \]

\(\text{Pf of Gauss Lemma.} \) Let \(N := N_p(S) \). Necessarily
\[
*: \prod_{\ell=1}^{H} \langle \ell \cdot S \rangle \equiv \prod_{\ell=1}^{H} \ell \cdot S = H! \cdot S^H \equiv H! \cdot \left(\frac{S}{p} \right),
\]
with the last step following from LSThm. Observe that \(\langle \ell \cdot S \rangle \) equals \(\pm \langle \ell(S) \rangle \) as \(\ell \) is not/is in \(\mathcal{G} \).
Prop’n 2, consequently, tells us that LhS(\(* \)) can be written as \(H! \) times \([-1]^N \). Thus RhS(\(* \)) equals
\[
H! \cdot \left(\frac{S}{p} \right) \equiv H! \cdot [-1]^N.
\]
The \(H! \), being co-prime to \(p \), cancels mod-\(p \) to hand us congruence \(\left(\frac{S}{p} \right) \equiv [-1]^N \).
\[\diamond \]

An important application is the following.

4: Two-is-QR Lemma. Consider an odd prime \(p \). Then \(2 \) is a \(p \)-QR IFF \(p \equiv \pm 1 \).
\[\diamond \]

Abbrev. An odd integer \(D \) is \textbf{8Near} if \(D \equiv \pm 1 \); it is \textbf{8Far} if \(D \equiv \pm 3 \). [The names come from being, mod 8, near/far from zero.]
\[\square \]

Proof. Call \(p \) “good” if \(2 \) is a \(p \)-QR. As usual, let \(H := \frac{p-1}{2} \). It is easy to check that
\[
\uparrow: \quad \text{Even } H \iff p \equiv \pm \{+1,-3\}; \quad \downarrow: \quad \text{Odd } H \iff p \equiv \pm \{-1,+3\}.
\]
Let \(\mathcal{G} := \mathcal{G}_p(2) \). Computing \(N := |\mathcal{G}| \) has two cases:
\[
|\text{Case: } H \text{ is even} | \quad \text{Here, } N = [H - H^2 + 1] + 1 = \frac{H}{2}, \quad \text{since } \mathcal{G} = \{H/2, H/2, \ldots, H\}.
\]
\[
|\text{Case: } H \text{ is odd} | \quad \text{So } N = [H - H^2 + 1] + 1 = \frac{H+1}{2}, \quad \text{since } \mathcal{G} = \{H/-2, H/2, \ldots, H\}.
\]
The Gauss lemma directs us to examine \(N \) mod-2.

\textbf{CASE: } H \text{ is even.} Courtesy (\(\uparrow \)) we can write \(p \) as
\[
8L + \{1,-3\}, \quad \text{with } L \in \mathbb{Z}. \quad \text{Thus}
\]
\[
H = \frac{8L + \{1,-3\} - 1}{2} = 4L + \{0,-2\}.
\]
So \(N = \frac{H}{2} = 2L + \{0,-1\} \). Consequently,
\[
p \text{ good } \iff N \equiv 2 \iff H \equiv 0 \iff p \equiv 1.
\]
Case: \(H \) is odd. We can write \(p = 8L + \{-1, 3\} \). Thus
\[
H + 1 = \frac{8L + \{-1, 3\} - 1}{2} + 1 = 4L + \{0, 2\}.
\]
So \(N = \frac{H + 1}{2} = 2L + \{0, 1\} \). Consequently,
\[
p \text{ good } \iff N \equiv 2 \iff H + 1 \equiv 4 \iff p \equiv 2 - 1.
\]
This gives the lemma.

The Wrapping function. Count “full Wraps”,
\[
W = W_p(S) := \sum_{\ell=1}^{H} \left\lfloor \frac{\ell \cdot S}{p} \right\rfloor,
\]
when walking around the circle with stridelength \(S \).
(Here, \(\lfloor \cdot \rfloor \) is the floor function.)

5: Eisenstein Lemma. Fix \(S \perp p \) from (1), with \(S \text{ odd} \). Then \(N \) and \(W \) are either both even or both odd. I.e.
\[
N_p(S) \equiv 2 \iff W_p(S).
\]

Proof of Eisenstein Lemma. Let \(r_\ell := \langle \ell \cdot S \rangle_p \). Then
\[
\ell \cdot S = p \cdot \left\lfloor \frac{\ell \cdot S}{p} \right\rfloor + \begin{cases} r_\ell & \text{if } \ell \in \mathcal{P} \\ p + r_\ell & \text{if } \ell \in \mathcal{G} \end{cases}.
\]
Summing this over \(\ell \) produces
\[
S \cdot \sum_{\ell=1}^{H} \ell = \sum_{\ell \in \mathcal{P}} r_\ell + p \cdot N + \sum_{\ell \in \mathcal{G}} r_\ell.
\]
On \([1..H]\), recall that \(\ell \mapsto r_\ell \) is a permutation up to sign. Thus
\[
6': \sum_{\ell=1}^{H} \ell = \sum_{\ell \in \mathcal{P}} r_\ell - \sum_{\ell \in \mathcal{G}} r_\ell.
\]
Subtracting equations, (6) – (6'), yields that
\[
7': (S - 1) \sum_{\ell=1}^{H} \ell = p \cdot W + p \cdot N + 2 \cdot \sum_{\ell \in \mathcal{G}} r_\ell.
\]
But \(S \) is odd, so \(S - 1 \equiv 0 \). Reducing each side mod 2, then, gives
\[
7': 0 \equiv 2 \cdot p \cdot \lfloor W + N \rfloor + 0
\]
\[
\equiv 2 \cdot W + N, \quad \text{since } p \text{ is odd}.
\]
Thus \(W \equiv 2 \cdot N \), as desired.

Filename: Problems/NumberTheory/quad-reciprocity.latex
Fig. 1: Here, $p=17$ and $q=13$. Note: The diagonal of $(0, H_p) \times (0, H_q)$ has no lattice-points, since $p \perp q$.

Triangle B contains $W_p(q)$ many lattice-pts because, traveling vertically from point $(k, 0)$, one passes through $\lfloor k \cdot \frac{q}{p} \rfloor$ many lattice-pts until reaching the diagonal line. Similarly, triangle A has $W_q(p)$ lattice-points. Hence $W_p(q) + W_q(p) = H_p \cdot H_q$.

Legendre/Jacobi Symbol

Consider a posint N and an integer $k \perp N$. This k is an N-**QR**, an N-quadratic-residue, if there exists an integer x with $x^2 \equiv_k N$; otherwise, this k is an N-**nonQR**. In contrast, if $k \not\perp N$, then k is neither a QR nor a nonQR.

For p prime, the **Legendre Symbol**

$$\left(\frac{k}{p} \right) := \begin{cases} 0 & \text{if } k \mid p \\ +1 & \text{if } k \text{ is a } p\text{-QR} \\ -1 & \text{if } k \text{ is a } p\text{-nonQR} \end{cases}. $$

I pronounce $(\frac{k}{p})$ as “k legendre p”. Below, I use $(\cdot)_N$ for the **symmetric** residue mod N.

10: **Legendre-Symbol Thm (LSThm).** For all odd-primes p and all integers K, k, k', we have:

A: If $k \perp p$: Our k is a p-QR IFF $\left(\frac{k}{p} \right) = 1$. [By def'n]

B: $\left(\frac{K}{p} \right) = \left(\frac{p-1}{2} \right)^{\frac{p-1}{2}}.$

Furthermore

i: LS is “top multiplicative”:

$$\left(\frac{k_1 k_2 \cdots k_L}{p} \right) = \left(\frac{k_1}{p} \right) \cdot \left(\frac{k_2}{p} \right) \cdots \left(\frac{k_L}{p} \right).$$

ii: If $k' \equiv_p k$ then $\left(\frac{k'}{p} \right) = \left(\frac{k}{p} \right).$.
Pf of (B). Use the involution \(x \mapsto \frac{K}{x} \) on \(\Phi(p) \). Etc.. ♦

Pf of (i). Note RhS(B) is [totally] multiplicative in \(K \). Hence LhS(B) is multiplicative in \(K \).

Defn of Jacobi Symbol. Factoring a posodd \(N \) into primes, \(N = p_1 \cdot p_2 \cdots p_L \), define the Jacobi Symbol by
\[
\left(\frac{k}{N} \right) := \left(\frac{k}{p_1} \right) \cdot \left(\frac{k}{p_2} \right) \cdots \left(\frac{k}{p_L} \right),
\]
where \(k \) is an arbitrary integer. ☐

11: Commentary. Properties (13ii,iii,iv), below, will give a lightning-bolt (ie, Euclidean) algorithm for rapidly computing Jacobi-Symbols; the QRecip property of JS is the primary reason for generalizing LS. However, something is lost in the process:

For example, \(\left(\frac{2}{3} \right) = 1 \), yet certainly 2 is not a 9-QR, since 2 is not a 3-QR.

Also, \(2^{H_0} = 4 \equiv_3 -2 \). So the symm-residue \(\langle 2^{H_0}_0 \rangle \) doesn’t equal \(\pm 1 \), let alone answer whether 2 is a 9-QR. Similarly, \([-1]^{H_0} = 1 \). So the value \(\mathbf{is} \) in \(\{ \pm 1 \} \), but the answer \(\mathbf{is} \) wrong: Negative-one is a 9-QR, since \(-1\) is a 3-nonQR.

12: Prop’n. For odd integers \(d \) and \(e \):
\[
H_d + H_e \equiv_2 H_{d,e}. \tag*{◊}
\]

Proof. Write \(d = 1 + 2A \) and \(e = 1 + 2B \). The product \(de \) equals \(4AB + 2A + 2B + 1 \). Thus
\[
H_{d,e} = 2AB + A + B \equiv_2 A + B \ \text{note} \ H_d + H_e. \tag*{♣}
\]

13: Jacobi-Symbol Thm (JSThm). For all posodd \(N, D, d, j \), and all integers \(K, K_j, K' \):

A: For each \(k \perp N: \ k \) is an \(N \)-QR IFF
\[
\text{Every prime} \ p \nmid N \ \text{has} \ \left(\frac{k}{p} \right) = 1.
\]
Moreover

\[i: \ \text{JS is “multiplicative, top and bottom”}: \]
\[
\left(\frac{k_1 \cdots k_j}{N} \right) = \left(\frac{k_1}{N} \right) \cdot \cdots \cdot \left(\frac{k_j}{N} \right) \quad \text{and} \quad \left(\frac{K}{d_1 \cdots d_j} \right) = \left(\frac{K}{d_1} \right) \cdot \cdots \cdot \left(\frac{K}{d_j} \right).
\]

ii: If \(k' \equiv_N k \) then \(\left(\frac{k'}{N} \right) = \left(\frac{k}{N} \right) \).

iii: These Jacobi-symbols satisfy:
\[
\left(\frac{2}{N} \right) = \begin{cases}
+1 & \text{if } N \equiv_8 \pm 1 \\
-1 & \text{if } N \equiv_8 \pm 3
\end{cases}.
\]
\[
\left(\frac{-1}{N} \right) = \begin{cases}
+1 & \text{if } N \equiv_4 1 \\
-1 & \text{if } N \equiv_4 -1
\end{cases}.
\]

iv: QReciprocity: For \(n \) and \(d \) posodd,
\[
\left(\frac{d}{n} \right) = \left(\frac{n}{d} \right) (-1)^{H_d \cdot H_n}. \tag*{◊}
\]

Pf of (13A). Fix a prime \(p \nmid N \). Take \(r \), a mod-\(p \) sqroot of \(k \). Let \(E \in \mathbb{Z}_+ \) be largest st. \(p^E \nmid N \). Use Hensel’s lemma to lift \(r \) to \(s_p \), a mod-\(p^E \) sqroot of \(k \). [Details: Our \(r \) is a mod-\(p \) root of \(f(x) := x^2 - k \). Now \(f'(r) \) not divisible by \(p \), since \(p \) is odd. Thus Hensel’s says this root can be lifted to a mod \(p^2 \) root, which can be lifted to a mod \(p^3 \) root, . . . , indefinitely.] ☞

For each \(p \nmid N \), let \(s_p \) be a mod-\(p \) sqroot of \(k \). Use CRThm ☞ to suture together the \(\{ s_p \mid p \nmid N \} \) values into a mod-\(N \) sqroot of \(k \).

Pf (13iii). Let \(\langle \cdot \rangle \) and \(\equiv \) mean symm-residue mod 8.

Our Two-is-QR Lemma implies that \(\langle \frac{2}{N} \rangle = -1 \) IFF \(N \) has oddly many 8Far primes in its factorization.

OTOHand, \(\langle N \rangle \) is the product of \(\langle p \rangle \) over these primes. And for each two values in \(\{ \pm 3 \} \), the product is congruent to \(\pm 1 \). So \(\langle N \rangle = \pm 1 \) IFF \(N \) has oddly many 8Far primes in its factorization. ☞

Pf (13iv). If \(d \not\parallel n \) then both \(\left(\frac{d}{n} \right) \) and \(\left(\frac{n}{d} \right) \) are zero. So establishing
\[
\hat{\dagger}: \quad \left(\frac{d}{n} \right) \cdot \left(\frac{n}{d} \right) \equiv \ Advertisement will suffice, since WLOG \(d \perp n \).

Lets prove the following.
\[
\hat{\dagger}: \quad \text{Suppose each of} \ d \ e \ \text{satisfies} \ (\hat{\dagger}) \ \text{w.r.t} \ n. \quad \text{Then their product} \ d \cdot e \ \text{satisfies} \ (\hat{\dagger}) \ \text{w.r.t} \ n.
\]

\footnote{Fix \(V \in [0..p) \) with \(V \equiv f'(r) \). For a posint \(\ell \), suppose \(r_\ell \) is mod-\(p^\ell \) sqroot of \(k \). Compute the integer \(m_\ell := -f(r_\ell)/p^\ell \). Now doing division mod \(p \), compute \(t_\ell \in [0..p) \) st. \(t_\ell \cdot V \equiv p m_\ell \). Then \(r_\ell + [t_\ell \cdot p^\ell] \) is mod-\(p^{\ell+1} \) sqroot of \(k \).}

\footnote{The Chinese Remainder Theorem.}
Applying (†) twice, and mult. top and bottom,
\[
\left(\frac{de}{n} \right) \cdot \left(\frac{n}{de} \right) = \left(\frac{d}{n} \right) \left(\frac{e}{n} \right) \cdot \left(\frac{n}{d} \right) \left(\frac{n}{e} \right) = \left(\frac{d}{n} \right) \left(\frac{n}{d} \right) \cdot \left(\frac{e}{n} \right) \left(\frac{n}{e} \right) = \left[-1 \right]^{H_d H_n} \cdot \left[-1 \right]^{H_e H_n}.
\]
The combined exponent is \(H_d H_n + H_e H_n \), i.e.,
\[
\left(\frac{de}{n} \right) \cdot \left(\frac{n}{de} \right) = \left[-1 \right]^{H_d H_n + H_e H_n}.
\]

And Prop’n 12 says that the RhS equals \(-1 \)^{\(d_e H_n \).}

Inducting twice. W.r.t. a posodd \(N \), say that posodd \(d \) is “\(N \)-good” if
\[
\begin{align*}
\left(\frac{d}{N} \right) &= \left(\frac{N}{d} \right) \cdot \left[-1 \right]^{H_d H_N}.
\end{align*}
\]

Having established (†), we have this:

\(\exists \): **For each posodd \(N \), the set of \(N \)-good numbers is scaled (closed) under multiplication.**

Fixing a prime \(N \), the QReciprocity Thm, in form \((8')\), tells us that every prime, \(d \), is \(N \)-good. By (3), then: **Every posodd \(d \) is \(N \)-good.**

But (1) is symmetric in \(N \& d \). So we can restate our accomplishment as: W.r.t. each posodd \(d \), every prime \(N \) is \(d \)-good. Applying (3) again, now says that every posodd \(N \) is \(d \)-good.

1st Application of LST+QRecip. Fix an \(N \in \mathbb{Z} \). We seek a characterization of those oddprimes \(p \perp N \), for which \(N \in \text{QR}_p \). Say \(k \) is 5Near if \(k \equiv_5 \pm 1 \), and \(k \) is 5Far if \(k \equiv_5 \pm 2 \).

14: Thm. **Prime \(p \neq 5 \) has \(\text{QR}_p \equiv 5 \) IFF \(p \) is 5Near.**

Proof. Since 5 is 4Pos, we have \(\left(\frac{5}{p} \right) = \left(\frac{p}{5} \right) \).

Unfinished: as of 27Jul2018

2nd Application of LST+QRecip. We will show:
15a: For each \(n \geq 2 \), integer \([n^3 - 1] \) has a 3Pos prime factor.

Note, \(n^3 - 1 = [n - 1][n^2 + n + 1] \) where We will prove this stronger statement:

15b: Thm. Let \(T_n := n^2 + n + 1 \), and define
\[
\mathcal{E}_n := \left\{ p \in T_n \mid p \text{ is prime, and } p \notin \{2, 3\} \right\}.
\]

Every \(\mathcal{E}_n \)-prime is 3Pos. And for each \(n \geq 2 \), collection \(\mathcal{E}_n \) is not empty.

Pf of 3Posness. LSTShow that \(p \in \text{3Pos} \), where \(p \) is an arbitrary non-2,3 prime \(p \) that divides \(*: F_n := 4T_n \not\sim [2n + 1]^2 + 3 \).

Now \(F_n \equiv_p 0 \), so (*) says \(-3\) is a mod-\(p\) square. By hyp, \(-3 \not\equiv_p \), so \(-3 \in \text{QR}_p \), i.e.
\[
1 = \left(\frac{-3}{p} \right) \left(\frac{-1}{p} \right) = \left[-1 \right]^{\frac{p - 1}{2}} \cdot \left(\frac{-1}{p} \right) = \left(\frac{-3}{3} \right) = \left(\frac{1}{3} \right).
\]

But the only 3-QR is 1. So \(p \) is 3Pos.

Pf \(\mathcal{E}_n \neq \emptyset \). Fix \(n \geq 2 \). FTSOC suppose \(\mathcal{E}_n \) is empty. Since \(T_n \) is odd, this implies that \(T_n = 3^k \), some \(k \geq 2 \); this last, since \(T_n > T_1 = 3 \). So \(\left\{ F_n = 4 \cdot 3^k \right\} \).

Since \(F_n \equiv \not\sim 0 \), our (*) says that \([2n + 1]^2 \not\sim \not\sim 3 \). Courtesy FTA, \([2n + 1] \not\sim 3 \). Thus, \([2n + 1]^2 \not\sim 0 \).

Recall that \(k \geq 2 \), whence \(F_n \not\sim 0 \). So (*) implies that \(0 \not\sim 3 \), which is false. Hence \(\mathcal{E}_n \) is non-void.

E11: For what negative integers \(n \) do we have (15a)? Or have (15b)?