Mean Value Theorem and L'Hôpital's Rule

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://people.clas.ufl.edu/squash/
10 December, 2018 (at 14:24)

Abbrevs. IVT: Intermediate Value Thm. MVT: Mean Value Thm. FTC; Fund. Thm of Calculus. Use cts for “continuous” and cty for “continuity.”

The exponential fnc exp can also be written exp(x) = e^x. (So log ◦ exp = I_d) Use NevZ to mean “never-zero”, e.g “exp() is NevZ on ℝ”.

Prolegomena. Use ℝ denote the extended reals [−∞, +∞]. With DNE denoting “Does Not Exist”, adjoin a point to ℝ to create

\[ℝ^\ast := [−∞, +∞] ∪ \{DNE\} \]

Use diff’able for “differentiable”. A fnc f: ℝ→ ℝ is ext-diff’able (for extended differentiable) if

\[\lim_{x→−∞} f(x) \] exists in [−∞, +∞].

Use \(f_{\text{LH}} \) for the left-hand ext-derivative, from \(\lim_{x→−6} \). Use \(f_{\text{RH}} \) for the right-hand ext-derivative, \(\lim_{x→6} \).

The result below apply to fncs on a closed bounded interval J. For specificity, I will use J := [4,6] and will use J^o := (4,6) for its interior.

A fnc h: J→ ℝ has a (global) max-point P ∈ J if

\[\forall x ∈ J: \quad h(P) ≥ h(x) \]

and the number h(P) is the “max-value of h on J”. Weaker, P is a local max-point of h (on J) if there exists a J-open set U ⊃ P, so that P is a global max-point of h|_U. Imagine analogous defns for min-point, min-value and local min-point of h.

1: Tool. A continuous h: J→ ℝ has a max-point and a min-point. Proof. Interval J is compact, etc.

2: Lemma. Suppose continuous h: J→ ℝ has a local-extremum at a point τ ∈ J^o. If h is extended-differentiable at τ, then \(h'(τ) = 0 \).

Proof. WLOG τ is a local-min of h. So for all x > τ with x suff. close to τ, necessarily h(x) − h(τ) ≥ 0; thus h'_{RH}(τ) = 0. Similarly, h'_{LH}(τ) = 0. By hypothesis, h'_{LH}(τ) = h'_{RH}(τ). So h'(τ) is zero.

3: Rolle’s Thm. Suppose a continuous h: [4,6]→ ℝ is ext-diff’able on (4,6). If h(4) = h(6), then there exists a point τ ∈ (4,6) such that \(h'(τ) = 0 \).

Proof. Courtesy (2), WLOG h() has no global-max in J^o, so its global-max on J must be the common value of h(4) = h(6). Thus h has a global-min in J^o; pick one, and call it τ. Now (2) gives that h'(τ) = 0.

4: MVT. Suppose cts f: [4,6]→ ℝ is ext-diff’able on (4,6). Then there exists a τ ∈ (4,6) such that

\[f'(τ) = \frac{f(6)−f(4)}{6−4} \]

Proof. With S := \(\frac{f(6)−f(4)}{6−4} \), the slope of the chord, let

\[h(x) := f(x) − |x−4| \cdot S \].

Since h(4) = f(4) = h(6), Rolle’s thm applies to assert a point τ ∈ (4,6) with 0 = h'(τ) = f'(τ) − 1⋅S.

E.g: Fnc \(f(x) := \sqrt{x} \) has \(f'(0) = +∞ \). MVT applies to assert a point τ ∈ (−8,27) where \(f'(τ) = \frac{3}{2\cdot\sqrt{3}} \).

For a beautiful MVT-application due to Liouville, see Liouville’s Theorem on my TeachingPage.

5: Prop’n. On an interval H⊂ ℝ, suppose fnc g is extended-differentiable. If g’ is NevZ on H, then g is strictly-monotone on H. (We do not assume that g’ is continuous.)

Proof. Were g not strictly-monotone then, WLOG, there are points a<b<c, in H, with g(a) ≤ g(b) yet g(b) ≥ g(c). WLOG g(a) ≤ g(c). Applying IVT to g on [a,b] yields point z ∈ [a,b] with g(z) = g(c). Now Rolle’s thm produces a τ ∈ (z,c) with g'(τ) = 0.

6: Cauchy MVT. Continuous fncs f,g: [4,6]→ ℝ are diff’able on (4,6). Then there exists a τ ∈ (4,6) st.

6a: \(f'(τ) \cdot [g(6)−g(4)] = g'(τ) \cdot [f(6)−f(4)] \).

And if g’ is never-zero on (4,6), then

6b: \[\frac{f'(τ)}{g'(τ)} = \frac{f(6)−f(4)}{g(6)−g(4)} \].
Proof of (6a). Apply Rolle's theorem to
\[7: \quad h(x) := f(x) \cdot |g(6) - g(4)| - g(x) \cdot |f(6) - f(4)|, \]
noting that \(h(4) = f(4)g(6) - f(6)g(4) = h(6) \). ♦

Proof of (6b). Since \(g' \) is NewZ on \((4, 6)\), the MVT forces \(g(6) \neq g(4) \). So we can cross-divide in (6a). ♦

L'Hôpital's Rule

I'll usually state the thms for a one-sided limits,
\[\lim_{x \to T} \text{ or } \lim_{x \not\to T}, \] where \(T \in \mathbb{R} \). I'll use “Lim(\(f \))”
to mean \(\lim f(x) \) or \(\lim f(x) \), as appropriate.

First some cautionary tales:

8: No end. What is \(\lim_{x \to \infty} \sqrt{\frac{x^2+1}{x}} \)?
Well, \(x < 0 \) implies that \(-\sqrt{x^2} = x \), so
\[
\sqrt{\frac{x^2+1}{x}} = \frac{\sqrt{x^2+1}}{-\sqrt{x^2}} = -\sqrt{1 + \frac{1}{x^2}}.
\]
Hence the limit \(x \to \infty \) is -1. But applying L'Hôpital to \(\sqrt{\frac{x^2+1}{x}} \)
will (after algebra) give \(\frac{x}{\sqrt{x^2+1}} \). Which L'Hôpital sends to the
original \(\sqrt{\frac{x^2+1}{x}} \).

9: BtDB: Back to the Drawing Board. Certainly
\[
\lim_{x \to \infty} \frac{x^2+\sin(x)}{x^2} = 1.
\]
L'Hôpital examines \(\frac{2x+\cos(x)}{2x} \); still limit=1. But applying L'Hôpital
again gives \(\frac{2-\sin(x)}{2} \), which has no limit. There is no error here; if the \(f'/g' \) limit doesn't exist in \(\mathbb{R} \),
then we can draw no conclusion about the \(f/g \) limit. [4] [5]

10: L'Hôpital's Thm. Fix a "target" \(T \in [\infty, +\infty) \) and
consider real-valued fns \(f, g \) defined on part of \(\mathbb{R} \).

Suppose there exists a real number \(B > T \) for which
\[10\): On \((T, B)\): \(f \& g \) are diff'ble, and \(g' \) is NewZ.\(^{\diamond1} \)

Recalling that \(\mathbb{R}^\circ = [\infty, +\infty) \cup \{DNE\} \), define
\[
L := \lim_{x \to T} \frac{f(x)}{g(x)} \in \mathbb{R}^\circ \quad \text{and} \quad \Lambda := \lim_{x \to T} \frac{f'(x)}{g'(x)} \in \mathbb{R}^\circ.
\]

\(^{\diamond1} \) Courtesy (5), our \(g \) is zero at most once on \((T, B)\). Consequently, we can move \(B \) closer to \(T \) so that \(g \) is NewZ on \((T, B)\).

Suppose, as \(x \searrow T \), that either
\[10_0: \quad g(x) \to 0 \text{ and } f(x) \to 0, \quad \text{or} \]
\[10_\infty: \quad g(x) \to \pm \infty. \]

If \(\Lambda \neq \text{DNE} \), then \(L = \Lambda \). ♦

Reduction to \(T \) finite. If \(T = -\infty \), then define
\[
\varphi(x) := \frac{1}{g(x)}, \quad \gamma(x) := \frac{1}{f(x)}.
\]
So \(\lim_{x \searrow 0} \varphi'(x) = \Lambda \). But the Chain Rule gives
\[
\varphi'(x) = \frac{1}{g(x)} \cdot f'(x), \quad \gamma'(x) = -\frac{1}{f(x)} \cdot g'(x).
\]
Thus \(\lim_{x \searrow 0} \frac{\varphi'(x)}{\gamma'(x)} = \Lambda \). Proving L'Hôpital for \((\varphi, \gamma \atop 0) \) will
thus establish L'Hôpital for \((f, g \atop -\infty) \).

In the proofs below, we will take \((T, B) = (4, 6) \). [4] [5]

Proof using \(10_0 \). We may extend \(f \) by continuity so that \(f \) is cts on \([4, 6]\); hence \(f(4) = 0 \). Ditto for \(g \).

Each \(x \in (4, 6) \), gives a point \(\bullet \in (4, x) \) with
\[
\frac{f'(\bullet)}{g'(\bullet)} \overset{\text{Cauchy-MVT}}{\Longrightarrow} \frac{f(x) - f(4)}{g(x) - g(4)} \overset{\text{note}}{\Longrightarrow} \frac{f(x)}{g(x)}.
\]
Sending \(x \searrow 4 \) forces \(\bullet \to 4 \).

Proof using \(10_\infty \). Assume, say, \(\Lambda = 7 \). (The \(\Lambda = \pm \infty \) case
just changes notation.) Fixing an \(\varepsilon > 0 \), ISTEstablish that
\[11: \limsup_{x \searrow 4} \frac{f(x)}{g(x)} \leq 7 + \varepsilon. \]

Inequality \(\liminf_{x \searrow 4} \frac{f(x)}{g(x)} \geq 7 - \varepsilon \) will follow analogously.

Take \(B > 4 \) so close to 4 that
\[12: \quad \forall y \in (4, B): \quad \left| \frac{f'(y)}{g'(y)} - 7 \right| \leq \varepsilon. \]

For each \(x \in (4, B) \), the Cauchy-MVT gives a point \(\bullet \in (x, B) \) with
\[13: \quad \frac{f'\left(\bullet_{x}\right)}{g'\left(\bullet_{x}\right)} = \frac{f(B) - f(x)}{g(B) - g(x)} \overset{\text{note}}{=\Longrightarrow} \frac{f(x)}{g(x)} - 1 = \frac{g(B)}{g(x)}. \]
And \(\frac{f(B)}{g(x)} \to 0 \), by \(10_\infty \), as \(x \searrow 4 \).

Taking limsup in (\(\ell 3 \)) gives

\[\limsup_{x \searrow 4} \frac{f'(x)}{g'} = \limsup_{x \searrow 4} \frac{f(x)}{g(x)}. \]

Now we don’t know that \(\bullet \to 4 \). But we do know that each \(\bullet \in (4, B] \). Thus LhS(\(\bullet \)) \(\leq 7 + \varepsilon \), by (\(\ell 2 \)). Hence (\(\ell 1 \)).

\[\star: \quad \limsup_{x \searrow 4} \frac{f'(x)}{g'}(x) = \limsup_{x \searrow 4} \frac{f(x)}{g(x)}. \]

\[\star \star: \quad \limsup_{x \searrow 4} \frac{f'(x)}{g'}(x) = \limsup_{x \searrow 4} \frac{f(x)}{g(x)}. \]

A remark on the above proof.

11: Can \(L = 1 \) yet \(\Lambda = \text{DNE} \)? Yes. For each sequence \(x_n \searrow 4 \), nec. \(\frac{f'(x_n)}{g'(x_n)} \to 1 \) and therefore \(\frac{f'}{g'}(\bullet_n) \to 1 \). Yet there could be a seq. \(z_n \searrow 4 \) where, say,

\[\frac{f'(z_n)}{g'(z_n)} \to \infty. \]

Yet it might that every \(\bullet_n \) sequence misses the dissenting \(z_n \) sequence. Indeed, this is what happens in example (BttDB), above.

12: Nifty application: Does \(h' \to 0? \) Given a differentiable function with finite limit, say \(\lim_{x \to 1} h(x) = 7 \), suppose \(L := \lim_{x \to 1} h'(x) \) exists in \(\mathbb{R} \). A picture suggests that \(L \), “must” be 0. Can we prove it by L'Hôpital’s theorem?

Let \(f := h \cdot \exp \) and \(g := \exp \). So \(\text{Lim} (\frac{f}{g}) = 7 \). But, \(f' = [h' + h] \cdot \exp \). So \(\text{Lim} (\frac{f'}{g'}) = L + 7 \). Thus L'Hôpital applies to tell us that \(7 = L + 7 \). Hence \(L = 0 \).□

13: FT Calculus. The conditions in (\(10_0 \)) apply to

\[\gamma: \quad \lim_{x \searrow 0} \frac{\int_0^x \sin(\sin(t)) \, dt}{x^2}. \]

Since the FT Calculus applies to the numerator, L'Hôpital yields \(\frac{f'}{g'}(x) = \frac{\sin(h(x))}{x} \). Applying L'H again gives

\[\frac{f''}{g''}(x) = \frac{\cos(h(x)) \cdot \cos(x)}{2}. \]

As \(\frac{f''}{g''}(0) = \frac{\cos(0) \cdot \cos(0)}{2} = \frac{1}{2} \), the limit in (\(13 \gamma \)) is \(\frac{1}{2} \).□

Here is the famous example by O. Stolz, published in 1871, generalized by R. P. Boas, 1986.

Stolz example: (1871). Let

\[f(x) := \int_0^x \cos(t)^2 \, dt \overset{\text{note}}{=} \frac{1}{2} \cdot [x + \cos(x) \cdot \sin(x)]. \]

Easily \(f(x) \searrow \infty \) as \(x \searrow \infty \). Evidently

\[g(x) := f(x) \cdot e^{\sin(x)} \]

\(\Rightarrow \infty \), since \(e^{\sin(x)} \) is banded below by \(1/e \), which is positive. Now \(f' = \cos^2 \).

Thus

\[\star: \quad g'(x) = \cos(x)^2 \cdot e^{\sin(x)} + f(x) \cdot e^{\sin(x) \cdot \cos(x)} \]

\[= \cos(x) \cdot e^{\sin(x) \cdot [\cos(x) + f(x)]}. \]

Dividing produces the to-zero-going quantity

\[\star \star: \quad \frac{f'}{g'}(x) = \frac{\cos(x)}{e^{\sin(x)} \cdot [\cos(x) + f(x)]}, \]

since \(\text{denom} \Rightarrow \infty \) and \(\text{numerator} \) is banded. Thus \(\Lambda = 0 \).

But \(L \) is the limit of \(\frac{f(x)}{g(x)} \overset{\text{def}}{=} \frac{1}{e^{\sin(x)}} \), which is oscillatory, i.e. DNE. What went wrong?

Give up? Don’t give up — examine the hypotheses of L’Hôpital with a finely-toothed comb. If desperate, read further . . .

\[\text{(**) in } \text{Job that } I \text{ performed in } \text{outside of } \text{course, despite the show's name. The answer is}\]

\[\text{In other words, note that } f' = \text{zero once.} \]

Filename: Problems/Analysis/Calculus/mvt-hopitals-rule.latex
In (*), note that g' is zero **infinitely** often, due to the initial $\cos()$ factor. This contravenes the (10†) condition, despite the snow-job that I perpetrated in (**).