Jordan Decomposition Theorem: LinearAlg

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/
19 April, 2019 (at 09:55)

ABSTRACT: Gives a home-grown proof of the Jordan Decomposition Theorem. (Some of the lemmas work in Hilbert space.) The “Partial-form JCF Theorem”, (26), needs to be reworked.

Prolegomenon

Our goal is to prove the “JCF” (Jordan Canonical Form) Theorem for a linear transformation \(T: H \to H \), where \(H \) is a finite-dim’al vectorspace. Formally, we’ll assume that \(H \) is \(F^{\times H} \), where the field \(F \) is either \(\mathbb{R} \) or \(\mathbb{C} \).

For vectorspaces use

\[
\text{vectorspace: } H, A, B, E, V
\]

\[
\text{dimension: } \mathcal{H}, A, B, E, V.
\]

Use sans-serif font for matrices \(A, B, G, I, M \). For square matrices \(A_x \), let \(\text{Diag}(A_1, \ldots, A_x) \) be the partitioned matrix which has \(A_1, \ldots, A_x \) along its diagonal, and zeros elsewhere.

1: Notation. A collection \(\mathcal{C} := \{V_1, V_2, \ldots, V_L\} \) of subspaces of \(H \) is \textit{linearly independent} (abbreviation \textit{lin-indep}) if the only soln to

\[
v_1 + \cdots + v_L = 0, \quad \text{with each } v_\ell \in V_\ell,
\]

is the trivial soln \(v_1 = 0, \ldots, v_L = 0 \).

Recall that a subspace \(V \subset H \) is \(T \)-invariant if \(T(V) \subset V \).

I’ll use \textit{eval}, \textit{evec} and \textit{e-space} for eigenvalue, eigenvector and eigenspace.

\[
2: \textbf{Defn.} \quad \text{W.r.t } T, \text{ a vector } v \text{ is nilpotent if } T^d(v) = 0 \text{ for some posint } d. \text{ Indeed, the } T-\text{depth} \text{ of a vector } v, \text{ written } T-\text{Depth}(v), \text{ is the infimum of all natnums } n \text{ for which } T^n(v) = 0. \text{ The zero-vector has depth } 0. \text{ An evec for eval=0 has depth } 1. (A \text{ non-nilpotent vector has depth } \infty.) \]

Use \(\text{Nil}(T) \) for the \textit{nilspace} of \(T \); it comprises the set of finite-depth vectors. So

\[
\text{Nil}(T) := \bigcup_{n=1}^\infty \text{Ker}(T^n) \supseteq \text{Ker}(T).
\]

Transformation \(T \) is \textbf{nilpotent} if there exists a posint \(D \) such that \(T^D = 0 \). Since \(H \) is finite dimensional, \(\{\text{trn } T \text{ is nilpotent iff } \text{Nil}(T) = H\} \)

\[
3: \textbf{Depth Lemma (preliminary). } \text{Consider a sum} \]

\[
v_1 + v_2 + \cdots + v_L
\]

whose depths satisfy

\[
d_1 > d_2 > \ldots > d_L.
\]

Then the depth of \((3’) \) is \(d_1. \)

\[
\text{Proof. } \text{Exercise.}\)

A \textit{downtup} (“down tuple”) \(\vec{D} = (D_1, \ldots, D_\mathcal{E}) \) is a sequence of integers with

\[
4: \quad D_1 \geq D_2 \geq \ldots \geq D_\mathcal{E} \geq 1.
\]

The \textbf{size} of \(\vec{D} \) is the sum \(D_1 + \cdots + D_\mathcal{E} \). A posint \(D \) determines a \(D \times D \) \textbf{Jordan Block} matrix

\[
5: \quad \mathcal{J}(D) := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}
\]

with zeros on the diagonal and ones on the first off-diagonal. Every undisplayed position is zero.

6: \textbf{Nilpotent JCF Theorem. } \text{A nilpotent } T:F^{\times H} \text{ has a unique downturn } \vec{D} \text{ so that}

\[
7: \quad M = M(\vec{D}) := \text{Diag} \left(\mathcal{J}(D_1), \ldots, \mathcal{J}(D_\mathcal{E}) \right)
\]

is the matrix of \(T \) w.r.t \textit{some} basis. In particular, \(\text{Size}(\vec{D}) \) equals \(\mathcal{H}. \)

\[
\square
\]
Remark. In general, the above basis is not unique.

The theorem can be restated ITOF of matrices. A nilpotent \(\mathbf{F} \)-matrix \(\mathbf{M}' \) determines a unique downtup \(\overrightarrow{D} \) so that, with \(\mathbf{M} \) from (7),

\[
\mathbf{M}' = \mathbf{G}^{-1} \cdot \mathbf{M}(\overrightarrow{D}) \cdot \mathbf{G},
\]

for some invertible \(\mathbf{F} \)-matrix \(\mathbf{G} \).

Temporarily letting \(c^1, \ldots, c^D \) denote the standard basis, notice that the \(D \times D \) jordan-blk (5) acts on the standard basis by sending \(c^D \to \cdots \to c^1 \to 0 \). Let this motivate our definition of a \textit{chain}:

A sequence \(\mathbf{C} = (c^d)_{d=1}^D \) of vectors, with \(D \geq 1 \), fulfilling

\[
0 \leftarrow c^1 \leftarrow c^2 \leftarrow \cdots \leftarrow c^D.
\]

Furthermore \(c^1 \neq 0 \), i.e., \(c^1 \) is an eigenvector. Equivalently, the depth of each \(c^d \) is \(d \).

Calling the (8)-chain \(\mathbf{C} \), let \(\text{Depth}(\mathbf{C}) := D \).

9: \textbf{Lemma.} Consider a chain \(\mathbf{C} \) as in (8). Then the eigenspace in \(\text{Spn}(\mathbf{C}) \) is just 1-dimensional. Further, \(\mathbf{C} \) is a basis for \(\text{Spn}(\mathbf{C}) \) and so the dimension of \(\text{Spn}(\mathbf{C}) \) is \(D \).

\textbf{Proof.} The Depth Lemma.

A \textit{chain complex} \(\overrightarrow{\mathbf{C}} \) for \(\mathbf{T} \) is a sequence \(\mathbf{C}_1, \mathbf{C}_2, \ldots, \mathbf{C}_\mathcal{E} \) of \(\mathbf{T} \)-chains such that \(\overrightarrow{D} \) is a down tuple, (4), where \(D_e := \text{Depth}(\mathbf{C}_e) \). Furthermore

10: The list \(c^1_1, c^2_1, \ldots, c^1_\mathcal{E} \) of eigenvectors is linearly independent.

The downtup \(\overrightarrow{D} \) is called the \textit{signature} of \(\overrightarrow{\mathbf{C}} \).

By the way, we call \(\overrightarrow{\mathbf{C}} \) a “spanning chain-complex” if \(\bigcup_{e=1}^\mathcal{E} \mathbf{C}_e \) is a basis for \(\mathbf{H} \). Courtesy the next lemma, the chain-complex spans iff \(D_1 + \cdots + D_\mathcal{E} \) equals \(\text{Dim}(\mathbf{H}) \).

11: \textbf{Chain Independence Lemma.} Suppose that \(\mathbf{C}_1, \ldots, \mathbf{C}_\mathcal{E} \) are chains (of possibly different lengths). Then TFAE Equivalent.

\(a \): The list of eigenvectors \(c^1_1, c^2_1, c^3_1, \ldots, c^1_\mathcal{E} \) is linearly independent.

\(b \): The list \(\text{Spn}(\mathbf{C}_1), \text{Spn}(\mathbf{C}_2), \ldots, \text{Spn}(\mathbf{C}_\mathcal{E}) \) of subspaces is linearly independent.

\(c \): The disjoint union \(\biguplus_{e=1}^\mathcal{E} \mathbf{C}_e \) is a lin-indep set.

\textbf{Proof.} That \((b) \Rightarrow (c) \) follows from Lemma 9. The interesting implication is \((a) \Rightarrow (b) \).

Were the subspaces dependent, then we could find vectors \(\mathbf{v}_e \in \text{Spn}(\mathbf{C}_e) \), not all \(0 \), so that

\[
\mathbf{0} = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_{\mathcal{E}-1} + \mathbf{v}_\mathcal{E}.
\]

Let \(\mathbf{D} \) be the maximum of \(\text{Depth} (\mathbf{v}_e) \), taken over \(e = 1, \ldots, \mathcal{E} \). Replacing each \(\mathbf{v}_e \) by \(\mathbf{T}^{D-1}(\mathbf{v}_e) \) arranges that: Each \(\mathbf{v}_e \) is either an eigenvector or is \(0 \), and not all are \(0 \).

Courtesy (9), the eigenspace in each \(\text{Spn}(\mathbf{C}_e) \) is 1-dim’al, so \(\mathbf{v}_e \) is a multiple of \(c^1_e \). But, by hypothesis, these evecs are linearly independent, \(\not\propto \). (I use \(\propto \) for “contradiction”.)

The above proof allows us to jazz up an earlier lemma. For a nilpotent vector \(\mathbf{v} \) of depth \(d \geq 1 \), call \(\mathbf{T}^{d-1}(\mathbf{v}) \) its \textit{penultimate vector}. [This penultimate vector is an evec.]

12: \textbf{Depth Corollary.} Let \(\mathbf{D} \) be the max depth of some list \(\mathbf{v}_1, \ldots, \mathbf{v}_\mathcal{E} \) of vectors. For those vectors of depth \(D \), suppose the set of their penultimate vectors is linearly-independent.

Then \(\text{Depth}(\mathbf{v}_1 + \cdots + \mathbf{v}_\mathcal{E}) = D \).

\textbf{The Construction}

To establish the existence part of \textbf{Nilpotent JCF Theorem}, we fabricate a spanning chain-complex for our nilpotent \(\mathbf{T} \).

Pick a maximum-length chain \(\mathbf{C}_1 \). Look at the lengths of those chains whose evec is \(\not\in \text{Spn}(\mathbf{C}_1) \); among those having the maximum length, take one such chain and call it \(\mathbf{C}_2 \). Pick a maximum-length chain, call it \(\mathbf{C}_3 \), from those whose evec is not in \(\text{Spn}(\mathbf{C}_1 \cup \mathbf{C}_2) \). Continuing, produces a sequence of some \(\mathcal{E} \) many
chains C_1, \ldots, C_ξ. By construction, the eigenvectors $c_1^\xi, \ldots, c_\xi^\xi$ are linearly indep., and their lengths satisfy $D_1 \geq D_2 \geq \ldots \geq D_\xi$.

Our goal is to show that $\text{Spn}(C_1 \sqcup \ldots \sqcup C_\xi)$ is all of H. [Corollarily, (11)\&(12) will imply that E is the dimension of the eigenspace of T.]

Proof. If $V := \text{Spn}(C_1, \ldots, C_\xi)$ is not all of H, then there exists a “bad” vector b i.e:

13: $b \notin V$, yet $T(b) \in V$.

[This, since T is nilpotent.] Thus we can write $T(b)$ as a lin.comb over the V-basis $\bigcup_i^\xi C_i$. Because it will make no difference to the following argument, I will assume, in the expansion of $T(b)$, that each non-zero coeff is 1.

Suppose, for example, that

14: $T(b) = [c_5^5 + c_3^{13} + c_3^{17}] + [c_6^4 + c_6^9] + [c_8^2 + c_8^{33}] + \ldots + [c_7^{14}]$.

Consider the c_5^5 term. It has a predecessor on its chain, since $5 < D_3$. (After all, D_3 is at least 47.) Hence replacing the bad vector b by $[b - c_6^6]$ preserves (13) and arranges that the T-image of this new b has one fewer term in (14). Only the chain-end $c_3^D_e$ of a chain C_e cannot be so removed.

Continue this until there are only chain-ends. For example,\(^{\odot1}\) suppose that the new b maps to

14': $T(b) = c_3^{D_3} + c_8^{D_8} + \ldots + c_7^{D_7}$.

Corollary 12 tells us that vector $T(b)$ has depth\(^{\odot2}\) $\text{Max}(D_3, D_8, \ldots)$ —which is D_3. Consequently:

\[
\text{The depth of } b \text{ is } 1 + D_3.
\]

But all the vectors in $\text{RhS}(14')$ were chosen, during “The Construction”, at stages 3 and after. So D_3 was not in fact the length of the longest available chain. \(\times\).

\(^{\odot1}\)In this example, (14) and (14') together tell us that $D_3 = 47$, $D_5 > 9$, $D_8 = 31$, and so on.

\(^{\odot2}\)Since $b \notin V$, our b is not an evec; so $T(b)$ is not 0. Hence $T(b)$ has at least one chain-end.

Uniqueness of signature. A spanning chain-complex must have exactly $E = \text{Dim}(E)$ chains, where E is the eigenspace of T. Although the spanning chain-complex itself is not unique nonetheless its signature is unique —the Nilpotent JCF Thm asserts this, so I’d better prove it!

15: Lemma. Given a nilpotent T, all spanning chain-complexes have the same signature. \(\diamondsuit\)

Proof. Consider two spanning chain-complexes

\[
\vec{C} = (C_1, \ldots, C_\xi),
\vec{C}^* = (Q_1, \ldots, Q_\xi),
\]

with different signatures. For specificity, suppose that the two signatures differ in their third term as follows:

\[
\begin{align*}
D_1 &\geq D_2 \geq 9 = D_3 \geq D_4 \geq \ldots \geq D_\xi; \\
D_1 &\geq D_2 \geq 8 = D_3^* \geq D_4^* \geq \ldots \geq D_\xi^*.
\end{align*}
\]

Now write vector c_1^9 over the \vec{C}^*-basis. This lin-comb must have a vector of depth 9 and none of greater depth. The only depth-9 vectors in \vec{C}^* lie in chains Q_1 and Q_2. So our lin-comb has form\(^{\dag}\):

\[
c_1^9 = \alpha_1 q_1^9 + \alpha_2 q_2^9 + u,
\]

for some scalars α_1, α_2 and some vector u in $\text{Spn}(\vec{C}^*)$ whose depth is at most 8; this, courtesy (12). Applying T^8 to (\(\dag\)) thus tells us that\(^{\ddag}\):

\[
c_1^1 \in \text{Spn}(q_1^1, q_2^1).
\]

Repeating the argument twice more gives

\[
\{c_1^1, c_2^1, c_3^1\} \subset \text{Spn}(q_1^1, q_2^1).
\]

But a 3-dim’al space won’t fit inside a 2-dim’al space. \(\ddag\)

Having proved JCF in the nilpotent case, (6), we now develop the tools for the general case.
§2 Algebraic information

The characteristic poly of an $M \times M$ matrix M is

$$\varphi_M(x) := \operatorname{Det}(xI - M).$$

So φ_M is a monic deg-M poly.

16: Lemma. For a $B \times B$ matrix B,

$$\operatorname{Ker}(B) \text{ is trivial } \iff \varphi_B(0) \neq 0,$$

i.e, IFF $\varphi_B()$ has a [non-zero] constant term. ♦

Suppose $A,B \subset H$ is a lin-indep pair of subspaces, which jointly span H. Indicate this by writing

$$A \oplus B = H.$$

Let Proj_B^A be projection, parallel to A, from H onto B. Said differently, put an inner-product on H making $A \perp B$. Then Proj_B^A is simply the orthogonal projection Proj_B. An arbitrary linear trans $T:H \circlearrowleft$ gives a composition

\ast:

$$B \xrightarrow{\operatorname{Proj}_B^A} H \xleftarrow{T} H$$

Let “T_B^A” denote the restriction of (\ast) to B, i.e., the mapping $B\circlearrowleft$ by

$$T_B^A := [\operatorname{Proj}_B^A \circ T]|B.$$

17: Block-UT-matrix Lemma. Consider an upper-triangular partitioned matrix

18:

$$M = \begin{bmatrix} A_{A \times A} & G_{A \times B} \\ 0_{B \times A} & B_{B \times B} \end{bmatrix}$$

Then $\operatorname{Det}(M) = \operatorname{Det}(A) \cdot \operatorname{Det}(B)$. In consequence, the char-poly φ_M factors as

18':

$$\varphi_M = \varphi_A \cdot \varphi_B.$$

Restated, suppose $T:H \circlearrowleft$ has subspaces A, B st.

19:

$$H = A \oplus B.$$

If subspace A is T-invariant then

19':

$$\varphi_T = \varphi_{T|A} \cdot \varphi_{T|B}. \quad \diamond$$

Proof of $\operatorname{Det}(M) = \operatorname{Det}(A) \cdot \operatorname{Det}(B)$. Since $\operatorname{Det}(M)$ is a sum of products taken over all transversals of M, ISTS that a transversal straying from the A,B blocks necessarily has product zero.

WLOG this misguided transversal hits G. It therefore misses some row of A hence (since A is square) some column of A. In this column, then, the transversal must hit the $0_{B \times A}$ block.

Exer: Why do the signs of the permutations work out correctly?

Proof of (19'). Let $B = (a_1, \ldots, a_A, b_1, \ldots, b_B)$ be a basis for H, with each $a_i \in A$ and $b_j \in B$. Then M, the B-matrix of T, has form (18). Furthermore, the (a_1, \ldots, a_A)-matrix of $T|A$ is A and the (b_1, \ldots, b_B)-matrix of T_B^A is B. Hence (18')\Rightarrow(19').

Recall from (2) the defn of nilpotent and Nil(T).

20: Lemma. Consider a nilpotent $S:F^A \circlearrowleft$. Then

$$\varphi_S(x) = [x - 0]^A.$$

Pf. The char-poly of a eval$=0$ Jordan-Block (5) is x^D. By the Block-UT-matrix Lemma, the char-poly of $\operatorname{Diag}(J_B(D_1), \ldots, J_B(D_\epsilon))$ is the product $x^{D_1} \cdots x^{D_\epsilon}$, i.e $x^{\sum_{i=1}^\epsilon D_i}$. ♦

21: Multiplicity Theorem. Let $A := \operatorname{Nil}(T)$. Then $A := \operatorname{Dim}(A)$ is the multiplicity of 0 in the characteristic poly φ_T, i.e,

$$\varphi_T(x) = [x - 0]^A \cdot g(x),$$

where g is a poly with a constant term. ♦

Proof. Let B be a complementary subspace $B \oplus A = H$. Then (19') and (20) tell us that

$$\varphi_T(x) = [x - 0]^A \cdot \varphi_{T_B^A}(x).$$

Consequently, courtesy (16), ISTProve that T_B^A has no kernel. So fix a $v \in B$ sent to 0 by T_B^A.

Decompose its image as $T(v) = b + a$, with $b \in B$ and $a \in A$. Then $0 = T_B^A(v) \not= b$. Hence $T(v) = a$. So $T(v)$ is nilpotent. Thus v too is nilpotent. So $v \in A \cap B$ and is therefore 0. ♦
§3 Using all the eigenvalues

For \(\lambda \in \mathbb{C} \), we now return to using “\(\lambda \)-evec” to mean an eigenvector with eigenvalue \(\lambda \), and we extend our defs to other evals.

An \(\lambda \)-Jordan Block is a \(D \times D \) matrix

\[
\lambda \text{-JB}(D) := \begin{bmatrix}
\lambda & 1 \\
& \lambda & 1 \\
& & \ddots & \ddots \\
& & & \lambda & 1 \\
& & & & \lambda
\end{bmatrix}.
\]

Generalizing, a downtup \(D = (D_1, \ldots, D_\ell) \) engenders an \(\lambda, D \)-Jordan Block

\[
\lambda \text{-JB}(D) := \text{Diag}(\lambda \text{-JB}(D_1), \ldots, \lambda \text{-JB}(D_\ell))
\]

24: Jordan Canonical Form Theorem. Suppose that \(T : \mathbb{F}^{\times H} \) has all of its eigenvalues \(\lambda_1, \ldots, \lambda_L \) in \(\mathbb{F} \). Then there is a unique list of downtups, \(\overrightarrow{D} = (D_1, \ldots, D_\ell) \) so that

\[
\text{Diag}(\lambda_1 \text{-JB}(D_1), \ldots, \lambda_L \text{-JB}(D_\ell))
\]

is the matrix of \(T \) relative to some basis.

In particular, \(\text{Size}(\overrightarrow{D}) = S_\ell \), where

\[
\varphi_T(x) = (x - \lambda_1)^{S_1} \cdot (x - \lambda_2)^{S_2} \cdots (x - \lambda_L)^{S_L}.
\]

is the \(\mathbb{F} \)-factorization of the char-poly of \(T \).

25: Partial-form JCF Theorem. Given linear \(T : \mathbb{F}^{\times H} \), factor its char-poly over \(\mathbb{F} \) as

\[
\varphi_T(x) = \prod_{\lambda} (x - \lambda)^{S_\lambda} \cdot g(x),
\]

where \(g \) is an \(\mathbb{F} \)-poly with no roots in \(\mathbb{F} \). (And \(\lambda_1, \ldots, \lambda_L \in \mathbb{F} \) are distinct.) Then there is a unique list of downtups, \(\overrightarrow{D} = (D_1, \ldots, D_\ell) \), Unfinished: as of 19Apr2019

For \(\alpha \in \mathbb{F} \), let \(T_\alpha \) abbreviate the \(T - \alpha I \) transformation, and let \(E_\alpha^{(d)} \) comprise the vectors of \(T_\alpha \)-depth at most \(d \). Evidently

\[
E_\alpha^{(d)} = \ker(T_\alpha^{\circ d})
\]
is a subspace, and \(E_\alpha^{(1)} \) is the eigenspace (when \(\alpha \) is an eigenvalue). Certainly

\[
\{0\} = E_\alpha^{(0)} \subset E_\alpha^{(1)} \subset E_\alpha^{(2)} \subset E_\alpha^{(3)} \subset \cdots \subset L_\alpha,
\]

where \(L_\alpha := \cup_{d=0}^{\infty} E_\alpha^{(d)} \) is the nilspace.

28: Lemma. Fix \(\alpha, \beta \in \mathbb{C} \). For each \(d = 0, 1, \ldots \), the subspace \(E_\alpha^{(d)} \) is forward-invariant under \(T_\beta \). Therefore \(L_\alpha \) is \(T_\beta \)-forward-invariant.

Proof. WLOG \(\alpha = 0 \) (replace \(T \) by \(T - \alpha I \) and \(\beta \) by \(\beta - \alpha \)). Fix an order \(d \), say \(d = 3 \), and fix a vector \(v \in E^{(3)}(\beta) \). Automatically \(T(v) \in E_\alpha^{(2)} \subset E_\alpha^{(3)} \). Hence \([T - \beta I]v = (T - \beta I)v \in E^{(3)}(\beta) \) as desired. ♦

29: Lemma. Consider distinct scalars \(\alpha \neq \beta \). For \(d = 0, 1, 2, \ldots \), the restricted operator

\[
[T - \beta I] \mid E^{(d)}_\alpha
\]
has trivial kernel and so is a (linear) automorphism of \(E^{(d)}_\alpha \) (since \(E^{(d)}_\alpha \) is finite-dim). Taking a union, then, \([T - \beta I] \mid L_\alpha \) is an automorphism of \(L_\alpha \).

Proof. WLOG \(\alpha = 0 \); so \(\beta \neq 0 \). By the preceding lemma, \(T_\beta \) maps \(E^{(d)}(\beta) \) into \(E^{(d)}(\beta) \). So FTSO with contradiction we may suppose that there is a non-zero \(v \in E^{(d)}(\beta) \) which is sent to \(0 \) by \(T_\beta \).

Evidently \(T \in T_\beta \). For \(j = 0, 1, 2, \ldots \), consequently, the vector \(T^j(v) \) is also in \(\ker(T_\beta) \). Consider the value of \(j \) for which \(T^j(v) \) is in \(E^{(1)}(\beta) \setminus \{0\} \).

Redefining \(v \) to be this \(T^j(v) \), we now have that

\(v \) is a non-zero vector simultaneously in \(\ker(T) \) and \(\ker(T_\beta) \).

But then \(0 = T_\beta(v) = T(v) - \beta v = -\beta v \). And this latter is not zero, since \(\beta \neq 0 \).

30: Prop’n. Let \(\lambda_1, \ldots, \lambda_L \) be the distinct eigenvalues of \(T \). Then the collection \(L_{\lambda_1}, \ldots, L_{\lambda_L} \) of nilspaces is linearly independent.

Filename: Problems/Algebra/LinearAlg/jordan_decomp.latex
Proof. Consider a sum \(\mathbf{v}_1 + \cdots + \mathbf{v}_L = \mathbf{0} \), with each \(\mathbf{v}_\ell \in \mathbf{L}_\lambda_\ell \). ISTShow that \(\mathbf{v}_1 = \mathbf{0} \). So ISTConstruct a linear \(\Lambda: \mathcal{H} \circlearrowleft \) sending each of \(\mathbf{v}_2, \ldots, \mathbf{v}_L \) to \(\mathbf{0} \), so that \(\Lambda|\mathbf{L}_{\lambda_1} \) is an automorphism of \(\mathbf{L}_{\lambda_1} \).

To this end, pick a number \(D \) large enough that

\[
[T_{\lambda_\ell}]^{\circ D}(\mathbf{v}_\ell) = \mathbf{0}, \text{ for each } \ell = 2, 3, \ldots, L.
\]

Since all the operators \((T_a)_{\alpha \in \mathcal{C}} \) commute, it follows that the composition

\[
\Lambda := [T_{\lambda_2} \circ T_{\lambda_3} \circ \cdots \circ T_{\lambda_L}]^{\circ D}
\]

sends each of \(\mathbf{v}_2, \ldots, \mathbf{v}_L \) to \(\mathbf{0} \). And Lemma 29 assures us that \(\Lambda \) is an automorphism of \(\mathbf{L}_{\lambda_1} \). ♦

Proof of JCF, (24). Apply the Nilpotent JCF to \(T_{\lambda_\ell} \) on \(\mathbf{L}_{\lambda_\ell} \) to get a basis \(\mathcal{B}_\ell \) for \(\mathbf{L}_{\lambda_\ell} \) against which \(T \) has a matrix-block of form \(\lambda_\ell T_{\mathcal{B}}(\mathcal{D}_\ell) \). Then \(\bigcup_{\ell=1}^L \mathcal{B}_\ell \) is a basis against which \(T \) looks like (25). That the downtup sequence is unique follows from the uniqueness in Nilpotent thm and that \(T \) uniquely determines its nilspaces. ♦

End Notes

See cayley_hamilton.latex for several applications of JCF, and the minimum polynomial of a matrix.

Transposes. Let \(J \) be a jordan block. Its transpose \(J^\mathsf{T} \) is conjugate to \(J \) simply by reversing the order of the vectors in the basis. It follows that

\[
JCF(T^\mathsf{T}) = JCF(T)
\]

for an arbitrary square matrix \(T \). □

Remark. Fix a square matrix \(T \). Given a scalar \(\lambda \), let \(\mathcal{D}_T(\lambda) \) be the corresponding downtup in \(JCF(T) \); if \(\lambda \) is not a \(T \)-eval, then the downtup is empty.

The complex-conjugate of a JCF is a JCF. So \(JCF(T) \approx \bar{J} \). This gives the \((\Rightarrow)\) direction below.

31: JCF-of-real Theorem. A complex JCF \(B \) is the JCF of some real matrix IFF

\[
\mathcal{D}_B(\lambda) = \overline{\mathcal{D}_B(\lambda)},
\]

for each complex number \(\lambda \). ♦

Proof of \((\Leftarrow)\). ISTProve this when \(B \) consists of a jordan block and its complex-conjugate. For specificity suppose that each jordan block has dimension \(D = 3 \).

Fix reals \(c \) and \(s \), and let

\[
\lambda^+ := c + is \quad \text{and} \quad \lambda^- := c - is.
\]

We show that \(B := \diag(\lambda^+, \lambda^-, \lambda^+ \mathcal{B}(3), \lambda^- \mathcal{B}(3)) \) is conjugate to a real matrix by producing a basis \(\{u_j, w_j\}_{j=1}^3 \) for \(\mathbb{C}^{\times 6} \), against which \(B \) acts using only real coefficients.

For each choice of \("^+" \) and \("^-" \), let \(\{e_j^\pm\}_{j=1}^3 \) be the std basis for \(\lambda^\pm \mathcal{B}(3) \). Thus for \(j \in [1 \ldots 3] \),

32:

\[
B(e_j^+) = \lambda^+ e_j^+ + 1 \cdot e_{j-1}^+,
\]

where \(e_0^\pm \) are two other names for \(0 \).

Define new vectors

\[
u_j := 1 \cdot e_j^+ + i \cdot e_j^-; \quad w_j := i \cdot e_j^+ + 1 \cdot e_j^-;
\]

so \(u_0 \) and \(w_0 \) are each \(0 \). Check that

\[
\frac{1}{2} [u_j \pm iw_j] = e_j^+,
\]

so (32) spans all the \(e \)'s. Thus (32) indeed is a basis for \(\mathbb{C}^{\times 6} \).

The \(B \)-images of vectors. Verify that

\[
cu_j + sw_j = \lambda^+ e_j^+ + i \lambda^- e_j^- \quad \text{and} \quad -su_j + cw_j = i \lambda^+ e_j^+ + \lambda^- e_j^-.
\]
From (33) we compute:

\[B(u_j) = 1 \cdot \left[\lambda^+ \cdot e_j^+ + 1 \cdot e_{j-1}^+ \right] +
 i \cdot \left[\lambda^- \cdot e_j^- + 1 \cdot e_{j-1}^- \right]. \]

Grouping terms by subscript, our \(B(u_j) \) equals

\[\left[\lambda^+ e_j^+ + i \lambda^- e_j^- \right] + \left[1 \cdot e_{j-1}^+ + i \cdot e_{j-1}^- \right]. \]

This, together with similar elbow grease, yields

\[
B(u_j) = [cu_j + sw_j] + u_{j-1}; \\
B(w_j) = [-su_j + cw_j] + w_{j-1}.
\]

Since all the coefficients are real, we get that \(B \) is conjugate to a real matrix. ♦

Cyclic decompositions. The (forward) cyclic subspace generated by \(v \) is

\[\text{Spn}(v, Tv, T^2v, T^3v, \ldots). \]

And \(T \) is a cyclic operator if there is a \(v \) whose cyclic subspace is all of \(V \).

Easily, a jordan-block is a cyclic operator on its space. So the jordan decomposition of \(T \) yields a \(T \)-cyclic decomposition of the vectorspace.

Yo! Look in source file, here. □