Intermediate-value Theorem

Jonathan L.F. King University of Florida, Gainesville FL 32611-2082, USA squash@ufl.edu Webpage http://squash.1gainesville.com/ 23 September, 2017 (at 13:43)

Bernard Bolzano (1781–1848) proved the following form of the Intermediate-value Theorem.

1: IVT. Suppose $f:[a,b] \to \mathbb{R}$ is continuous, with f(a) and f(b) non-zero and having different signs. Then there exists a point $c \in (a,b)$ which is a zero of f, i.e, f(c) = 0.

Proof. WLOGenerality, f(a) < 0 and f(b) > 0; otherwise, simply replace f by -f (which preserves continuity) and note that a zero of -f is a zero of f.

Let $L_0 := a$ and $R_0 := b$. For stage n = 1, 2, ...,either up to some integer K, or out to ∞ , I will produce numbers L_n and R_n such that:

i[n]: $a \leq L_{n-1} \leq L_n < R_n \leq R_{n-1} \leq b$; ii[n]: $R_n - L_n = \frac{1}{2}[R_{n-1} - L_{n-1}]$; iii[n]: $f(L_n) < 0 < f(R_n)$.

Stage-*n* construction. Let *M* be the midpoint of interval $[L_{n-1}, R_{n-1}]$, i.e., $M := \frac{1}{2}[L_{n-1} + R_{n-1}]$.

CASE: If f(M) is zero, then STOP Set K := n-1. By (i[K]), note that M is strictly between a and b. So c := M fulfills the conclusion of the theorem.

CASE: Otherwise, $f(M) \neq 0$. If f(M) negative then let $L_n \coloneqq M \& R_n \coloneqq R_{n-1}$. If f(M)positive then let $L_n \coloneqq L_{n-1} \& R_n \coloneqq M$. In either case, conditions (i,ii,iii[n]), automatically hold. **Last step.** WLOGenerality, we may assume that our construction never STOPped. So we have two sequences, $\vec{L} := (L_n)_{n=0}^{\infty}$ and $\vec{R} := (R_n)_{n=0}^{\infty}$.

By (i), \vec{L} is increasing and is bounded above by b. Since a bounded monotone seq must converge, $L_{\infty} := \lim_{n \to \infty} L_n$ exists; it is in interval [a, b], courtesy (i).

Thus f is defined -hence continuous- at L_{∞} , so $f(L_{\infty})$ equals $\lim_{n} f(L_{n})$. And $f(L_{\infty}) \stackrel{\text{must}}{\leq} 0$ since each $f(L_{n}) \leq 0$.

Analogously, $f(R_{\infty}) := \lim_{n \to \infty} f(R_n)$ exists, and is non-negative. Furthermore

$$R_{\infty} - L_{\infty} = \lim_{n \to \infty} [R_n - L_n], \text{ by what thm?},$$

= $\lim_{n \to \infty} [\frac{1}{2}]^n \cdot [b - a], \text{ by (iii) and induction,}$
= 0.

Thus R_{∞} and L_{∞} equal a common value, call it c, in interval [a, b]. The preceding paragraphs tell us that $f(c) \leq 0$ and $f(c) \geq 0$; so f(c) must be zero. Hence $c \notin \{a, b\}$.

Filename: Problems/Analysis/Calculus/interm.val.thm.latex As of: Sunday 02Nov2008. Typeset: 23Sep2017 at 13:43.