Hensel's Lemma

Jonathan L.F. King University of Florida, Gainesville FL 32611-2082, USA squash@ufl.edu Webpage http://squash.1gainesville.com/ 17 November, 2017 (at 11:53)

Notation. Quantities $x, y, M, m, K, k \dots$ are integers, by default. Recall " $x \equiv_m y$ " means $[x - y] \models m$. Thus \equiv_0 is equality, =, in the integers.

1: Tools. Consider $n \in \mathbb{Z}, K \in \mathbb{N}, M \in \mathbb{Z}_+$ and an intpoly h(). Then:

Ratio $[n \downarrow K]/K!$ is an integer. 1a: Differentiating, $h^{(K)}/K!$ is an intpoly. 1b: 1c: $\forall x,y \colon [x \equiv_M y] \Rightarrow [h(x) \equiv_M h(y)].$

1d: If
$$N := \text{Deg}(h) \ge 1$$
, then for complex numbers Z, b :

$$h(Z+b) = h(Z) + [h'(Z)\cdot b] + \sum_{K=2}^{N} \frac{h^{(K)}(Z)}{K!} \cdot b^{K}$$
.

Pf of (1a). For $n \ge K \ge 0$, set j := n - K and note $\llbracket n \downarrow K \rrbracket / K!$ equals $j! \cdot \binom{n}{K, j}$, which is an integer. Hence degree-K polynomial $f(x) := [x \downarrow K]/K!$ is integer-valued at K+1 consecutive integers [indeed, for all integers $x \in [K \dots \infty)$, and thus (exercise) is integervalued at *all* integers. [However, the *coeffs* of f need not be integers.

Pf of (1b). Write h(x) as $\sum_{j=0}^{\text{Finite}} C_j x^j$. For $n \ge K$, the coefficient of x^{n-K} in $\frac{h^{(K)}(x)}{K!}$ is $C_n \cdot \frac{[\![n \downarrow K]\!]}{K!}$.

Since h is a degree-N polynomial, its *Pf of* (1d). N^{th} -Taylor-poly is h itself.

Hensel's Setting. Fix an intpoly f() of degree $N \ge$ 1, and fix a prime P.

Use $\stackrel{\ell}{\equiv}$ as a synonym for $\equiv_{P^{\ell}}$, e.g. $257 \stackrel{3}{\equiv} 7$ means $[257-7] \models P^3$. For a *level* $\ell \in \mathbb{Z}_+$, an integer α is an " ℓ -root (of f)" if

$$f(\boldsymbol{\alpha}) \equiv 0$$
.

For $\ell = 2, 3, \ldots$, we seek ℓ^{th} -roots of f, starting from a given $\ell=1$ root Z, i.e $f(Z) \equiv_P 0$.

Set $Z_1 \coloneqq Z$. We proceed by induction on ℓ .

2: Hensel's, non-singular. Suppose $f(Z) \equiv_P 0$ yet $f'(Z) \not\equiv_{\mathsf{P}} 0.$ Let $U \coloneqq \langle 1/f'(Z) \rangle_{\mathsf{P}}.$ Setting $Z_1 \coloneqq Z$, for $\ell = 1, 2, \ldots$ define

2a:
$$Z_{\ell+1} \coloneqq Z_{\ell} - [f(Z_{\ell}) \cdot U], \pmod{P^{\ell+1}}.$$

This satisfies that

2c:

 $Z_{\ell+1} \equiv Z_{\ell}$ 2b: and $f(Z_{\ell+1}) \stackrel{\ell+1}{\equiv} 0.$ \Diamond

Proof. Fix an $\ell \in \mathbb{Z}_+$ st. $f(Z_\ell) \stackrel{\ell}{\equiv} 0$ and $Z_\ell \equiv_P Z$. We solve for those values $t \in \mathbb{Z}_P$, if any, such that sum

*:
$$Z_{\ell+1} \coloneqq Z_{\ell} + tP^{\ell}$$

satisfies (2c). Let $\alpha \coloneqq Z_{\ell}$. We apply Taylor's thm to $f(\boldsymbol{\alpha} + tP^{\ell})$. Its k^{th} term is

$$au: \qquad rac{f^{(k)}(oldsymbollpha)}{k!} \cdot t^k \mathcal{P}^{k\ell}$$

When $k \ge 2$, then $k\ell \ge 2\ell \ge \ell+1$, since $\ell \ge 1$. Hence $\mathcal{P}^{k\ell} \stackrel{\ell+1}{\equiv} 0$. Ratio $[f^{(k)}(\boldsymbol{\alpha})/k!]$ is an *integer*, courtesy (1b). Hence (†) is $\stackrel{\ell+1}{\equiv} 0$. Consequently,

$$f(\boldsymbol{\alpha} + t\boldsymbol{P}^{\ell}) \stackrel{\ell+1}{\equiv} f(\boldsymbol{\alpha}) + [f'(\boldsymbol{\alpha}) \cdot t\boldsymbol{P}^{\ell}].$$

We seek a t making this zero, mod $P^{\ell+1}$; i.e, that

$$\dagger: t \cdot f'(\boldsymbol{\alpha}) \cdot P^{\ell} \stackrel{\ell+1}{\equiv} -f(\boldsymbol{\alpha}).$$

By hypothesis, $f(\alpha) \models P^{\ell}$. So (†) is equivalent to

2d:
$$t \cdot f'(\alpha) \equiv_{P} -\frac{f(\alpha)}{P^{\ell}}$$
. [Division is in Z.]

By our hypothesis, $\alpha \equiv_P Z$ and so U is the mod-P reciprocal of $f'(\boldsymbol{\alpha})$. Thus

$$t \equiv_{P} -\left[\frac{f(\boldsymbol{\alpha})}{P^{\ell}}\right] \cdot U.$$
 [Division is in Z.]

Plugging this into (*) gives (2a).

NB: Please ignore the singular case, which is below.

Defn. Fix a posint T. For a level ℓ satisfying

3a: $\ell \geq 1+2T$,

say that an integer α is " ℓ , T-good" if

3b: $f(\boldsymbol{\alpha}) \stackrel{\ell}{\equiv} 0$, and the derivative satisfies 3c: $f'(\boldsymbol{\alpha}) \parallel \boldsymbol{\bullet} \boldsymbol{P}^T$.

4.0: Hensel singular-thm. Fix a posint T, and let " ℓ -good" mean ℓ , T-good.

Consider a level ℓ and an ℓ -good integer α . There there exists a unique $m \in [0 \dots P)$ such that

$$\boldsymbol{\beta} \coloneqq \boldsymbol{\alpha} + m \boldsymbol{P}^{\ell - T}$$

is $[\ell+1]$ -good.

Proof. Inequality (3a) gives $\ell - T \ge T+1$. Thus each $\beta \equiv_{P^{T+1}} \alpha$. Applying (1) to intpoly f'() gives

 $f'(\boldsymbol{\beta}) \equiv_{\boldsymbol{P}^{T+1}} f'(\boldsymbol{\alpha}).$

Thus (3c) forces $f'(\beta) \models P^T$, regardless of m.

Of course, $\ell+1 \ge \ell \ge 1+2T$, so to produce β which is $[\ell+1]$ -good, we must exhibit an m with $f(\beta) \models \mathcal{P}^{\ell+1}$.

Making an $[\ell+1]$ -root β . For an exponent $e \in \mathbb{N}$ and all $m, x \in \mathbb{Z}$, we can expand the e^{th} -power as

$$[x+mP^{\ell-T}]^e = x^e + mP^{\ell-T} \cdot {\binom{e}{1}} x^{e-1} + m^2 P^{2[\ell-T]} \cdot {\binom{e}{2}} x^{e-2} + \dots$$

Since (3a) implies $2[\ell - T] \ge \ell + 1$, we have that

$$[x + mP^{\ell-T}]^e \stackrel{\ell+1}{\equiv} x^e + mP^{\ell-T} \cdot {\binom{e}{1}} x^{e-1}$$
$$= x^e + mP^{\ell-T} \cdot \frac{\mathrm{d}}{\mathrm{d}x}(x^e) \,.$$

Write f(x) as $\sum_{e=0}^{N} C_e x^e$. Multiplying the above by C_e , then summing, gives

4.1:
$$f(x+m\mathsf{P}^{\ell-T}) \stackrel{\ell+1}{\equiv} f(x) + m\mathsf{P}^{\ell-T} \cdot f'(x),$$

where $\boldsymbol{\beta}_m \coloneqq \boldsymbol{\alpha} + m \boldsymbol{P}^{\ell - T}$.

Dividing. Courtesy (3c), we can write

$$f'(\boldsymbol{\alpha}) = D \cdot \boldsymbol{P}^T$$
, with $D \perp \boldsymbol{P}$.

And (3b) gives $f(\boldsymbol{\alpha}) = E \cdot \boldsymbol{P}^{\ell}$ with $E \in \mathbb{Z}$. So we can rewrite (4.1) as

4.2:
$$f(\boldsymbol{\beta}_m) \stackrel{\ell+1}{\equiv} [E + mD] \cdot \boldsymbol{P}^{\ell}.$$

Since $D \perp P$, there is a unique $m \in [0..P)$ making $E + mD \equiv_P 0$. That is the unique value making $f(\beta_m) \equiv_{P^{\ell+1}} 0$.

Filename: Problems/NumberTheory/hensel-lemma.latex As of: Thursday 18Apr2013. Typeset: 17Nov2017 at 11:53.

 \Diamond