Finite fields have cyclic multiplicative
groups &
NumThy: Primitive Roots : Algebra

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/
31 July, 2018 (at 11:10)

Common notation. Use PoT for “power of two”; the
PoTs are 1, 2, 4, . . .

Use \(\equiv_N \) to mean “congruent mod \(N \)”. Let \(n \perp k \) mean
that \(n \) and \(k \) are co-prime. Use \(k \divides n \) for “\(\frac{n}{k} \) divides \(n \)”. Its
negation \(k \nmid n \) means “\(k \) does not divide \(n \).” Use \(n \bullet k \) and
\(n \nmid k \) for “\(n \) is/is-not a multiple of \(k \).” Finally, for \(p \) a prime
and \(E \) a natnum: Use double-vertices, \(p^E \bullet\nmid n \), to mean that \(E \)
is the highest power of \(p \) which divides \(n \). Or write \(n \bullet p^E \)
to emphasize that this is an assertion about \(n \). Use PoT for
Power of Two and PoP for Power of (a) Prime.

For \(N \) a posint, use \(\Phi(N) \) or \(\Phi_N \) for the set
\(\{r \in \{1\ldots N\} \mid r \perp N\} \). The cardinality \(\varphi(N) := |\Phi_N| \) is the Euler phi function. [So \(\varphi(N) \) is the cardinality of the multiplicative
group, \(\Phi_N \), in the \(\mathbb{Z}_N \) ring.] Easily, \(\varphi(p^r) = [p^r]-p^{r-1} \), for
prime \(p \) and posint \(L \).

Use EFT for the Euler-Form Thm, which says: Suppose
that integers \(b \perp L \), with \(L \) positive. Then \(b^{\varphi(L)} \equiv 1 \).

Bézout’s thm says: Given a finite list of integers, not all
zero, their GCD is some integer linear combination of the given integers.

Defn: The order of an element. Suppose \((S, \cdot)\) is a
semigroup [written multiplicatively, with unit] which is not
necessarily abelian, nor finite. Fix a \(y \in S \). A posint
\(n \) is “a period of \(y \)” if \(y^n = 1 \). Let

\[
\text{Per}_S(y) := \{ n \in \mathbb{Z}_+ \mid y^n = 1 \}.
\]

Written \(\text{Ord}_S(y) \) or just \(\text{Ord}(y) \), the order of \(y \) in
(semigroup \(S \)) is the infimum of the periods of \(y \); so if
\(y \) has no periods [i.e \(y^n \) is never 1] then \(\text{Ord}(y) = \infty \).

Of course, when \(y \) has finite order, \(n \), then \(y \) is
invertible, since \(y \cdot y^{-1} = 1 \). Thus a semigroup in
which every element has finite order is automatically
a group. Consequently, assertions which would gain
no generality if stated for a semigroup \(S \), are stated
for a group \(G \).

Integers mod \(N \)

An integer \(y \) has a mod-\(N \) multiplicative-order IFF
\(y \perp N \). Let \(\text{Ord}(y) := \text{Ord}_N(y) \) denote this order,
and \(\text{Per}_N(y) \) the set of periods.

1: Prop’n. Suppose posints \(K \bullet N \) and \(y \perp N \). Then
\(\text{Ord}_K(y) \bullet \text{Ord}_N(y) \).

Proof. Let \(k := \text{Ord}_K(y) \). Bézout’s thm implies that
\(\text{Per}_K(y) \) equals \(k \mathbb{Z} \). For an \(n \in \text{Per}_N(y) \), note,
\([y^n - 1] \bullet N \bullet K \). So \(n \in k \mathbb{Z} \).

Given a ring-hom \(h: \Gamma \to \Gamma’ \), easily the foward image
of the units \(h(U) \subset U’ \), where \(U, U’ \) are the respective
units-groups. Some units in \(U’ \) may be missed. E.g,
\(h: \mathbb{Z} \to \mathbb{Z}_5 \) by \(x \mapsto \langle x \rangle_5 \).

2: Prop’n. Fix posints \(N \bullet K \). Let \(h: \mathbb{Z}_N \to \mathbb{Z}_K \) be
the surjective ring-hom \(x \mapsto \langle x \rangle_K \). Then the \(h \)-image
of mult-group \(\Phi(N) \) is all of \(\Phi(K) \). In particular

\[\Phi(N) \text{ cyclic } \Rightarrow \Phi(K) \text{ cyclic.} \]

Hence, if \(g \) is an \(N \)-primroot, then \(\langle g \rangle_K \) is a \(K \)-primroot.

Proof. Let \(Q := \frac{N}{K} \). Take the special case that \(K \perp Q \).
Then the CRTThm gives a ring-iso \(f: \mathbb{Z}_N \to \mathbb{Z}_K \times \mathbb{Z}_Q \) by
\(x \mapsto \langle \langle x \rangle_K, \langle x \rangle_Q \rangle \). Exercise: The set of units in
\(\mathbb{Z}_K \times \mathbb{Z}_Q \) is \(\Phi(K) \times \Phi(Q) \). Hence, for \(y \in \Phi(K) \): The
set \(h^{-1}(y) \) has precisely \(\varphi(Q) \)-many preimages which are
\(\mathbb{Z}_N \)-units, and \(Q - \varphi(Q) \) which are zero-divisors.

General case. Alas, \(K \) need not be co-prime to \(\frac{N}{K} \). So let \(\mathbb{K} \) be the product, over those primes
\(p \bullet K \), of \(p^{\varphi(p)} \), where \(p^{\varphi(p)} \bullet N \). Evidently \(\mathbb{K} \perp N/\mathbb{K} \).

A \(K \)-unit \(y \) evidently has \(y \perp \mathbb{K} \). By the above
special case, \(y \) has a “\(\mathbb{K} \)-lift” \(y + t\mathbb{K} \) which is co-prime
to \(N \). And it is also a \(K \)-lift, since \(K \bullet \mathbb{K} \).

Fields

Let \(F \) be a field, and let \(G \) be its multiplicative subgroup;
that is, \(G := F - \{0\} \). Fix \(n \) and consider all elements in \(F \) of period \(n \).
These are the roots of polynomial \(x^n - 1 \). A standard result about fields (see
“Integral domain question”, below) is that a polynomial of
degree n can have at most n roots. Thus the multiplicative group of the field is order-constrained: Say that a semigroup S is order-constrained if,

3: For each positive integer n, there are at most n elements $x \in S$ satisfying $x^n = 1$.

Our goal is to prove this theorem.

4: Field-Cyclic Theorem. Consider F, a finite field with $G := F \setminus \{0\}$ its multiplicative subgroup. Let $L := |G|$. Then G is cyclic, that is, $(G, \cdot, 1)$ is group-isomorphic to $(\mathbb{Z}_L, +, 0)$.

The above theorem is an immediate corollary of the following, for which we will give two proofs.

5: Cyclic Theorem. Suppose G is a finite group (possibly non-abelian) which is order-constrained. Then G is cyclic.

Left to the reader is the easy converse:

5′: If G is a finite cyclic group then G is order-constrained.

Our first proof of (5) will work in general. The second proof only works for G abelian; however, it proceeds via the LCM Lemma, which is interesting in its own right, and which applies even to infinite semigroups.

Proof of (5). Let $L := |G|$. Our goal is to show that there is an element of order L.

Counting elements in G. For each postive m dividing L, let $\psi(m) = \psi_G(m)$ denote the number of elements of G whose order is precisely m. Thus

5a: \[\sum_{m \mid L} \psi(m) = |G| = L. \]

Now consider an m for which $\psi(m)$ is not zero; so there is an element $b \in G$ whose order is m. This b generates a copy of $(\mathbb{Z}_m, +, 0)$ inside of G, and this subgroup exhausts all the elements which are m-periodic, since G is order-constrained. Hence the only elements of order m are those in this copy of \mathbb{Z}_m; and there are $\varphi(m)$ of them.

The upshot: Each $\psi(m)$ is either 0 or is $\varphi(m)$. In particular

5b: For each m: $\psi_G(m) \leq \varphi(m)$.

Counting elements in \mathbb{Z}_L. Let’s apply the same analysis to $(\mathbb{Z}_L, +)$, which is order-constrained. For this group, we know that whenever m divides L there indeed is an element of order m; namely, the element L/m. So $\psi_{\mathbb{Z}_L}(m)$ always is $\varphi(m)$. Consequently, applying (5a) to \mathbb{Z}_L provides that

5a′: \[\sum_{m \mid L} \varphi(m) = |\mathbb{Z}_L| = L. \]

The two sums in (5a),(5a′) are equal. Yet (5b) provides a term-by-term inequality between the summands. Consequently, the summands must be equal term-by-term. In particular, $\psi_G(L) = \varphi(L)$, which is positive. So there are elements of order L in G.

The second proof of (5), when G is abelian

Our second proof proceeds via this lemma:

6: LCM Lemma. Suppose S is an abelian semigroup, which may be infinite. For each two elements $a, b \in S$, the LCM of their orders, α and β, is itself the order of some element in sub-semigroup $(a, b) \subset S$.

In the $\alpha \perp \beta$ special-case, element ab has order $\alpha \beta$.

Proof. WLOG both elements have finite order.

When $\alpha \perp \beta$. Write $\omega := \text{Ord}(ab)$. Since $[ab]^{\alpha \beta} = [a^{}][b^{}][a^{}] = 1 \cdot 1 = 1$, we have that $\omega \equiv \alpha \beta$. Thus ISTShow that $(\omega \cdot \alpha \beta)$. We need this computation:

\[1 = \beta = [ab] = a^{\omega \beta}b^{\omega} \quad \text{since } G \text{ is abelian,} \]

So $\omega \beta \equiv \alpha$. Since $\beta \perp \alpha$, necessarily $\omega \equiv \alpha$.

Similarly, $\omega \equiv \beta$. So $\omega \equiv \alpha \beta$, by co-prime-ness.

The general case. Suppose g_1 and g_2 are elements whose orders, γ_1 and γ_2, are not necessarily co-prime.

For each prime p, let $e_j = e_j(p)$ be the largest exponent such that $p^{e_j} \equiv \gamma_j$. Define the integers N_1 and
N_2 as the following products over all primes p:

$\gamma := \text{LCM}(\gamma_1, \ldots, \gamma_L)$, so

$$\gamma = \text{Ord}(b) \iff \#G,$$

so every element of G has period β. Thus $\#G \leq \beta$, since G is order-constrained. Consequently, the cyclic subgroup generated by b is all of G.

Questions/Exercises

Note that a commutative ring Γ without zero-divisors (an integral domain) has this property: A polynomial of degree n can have at most n roots. (First extend Γ to its field of fractions, then use synthetic division. Since no zero-divisors, all roots must appear in the factorization obtained.)

7a: **Lemma.** A finite ring Γ without [non-trivial] zero-divisors is necessarily a division-ring. (Each non-zero element has a reciprocal.)

Proof. Fix a non-zero $b \in \Gamma$. The map $x \mapsto xb$ is injective ($xb = yb$ implies $x - yb = 0$, etc.) Since Γ is finite, $x \mapsto xb$ is onto. So b has a left-inverse.

7b: **Question.** This leaves open the question: Are there non-commutative finite division rings? We can’t apply the Cyclic Theorem because we can’t use synthetic division (at least, not directly) to show that the multiplicative group is order-constrained.

What do you think? (See wedderburn-thm.latex for an answer.)

Primitive Roots

Each posint N yields an abelian (multiplicative) group $\Phi(N)$. If this group is cyclic then each of its generators is called a “primitive root mod N” or an N-primroot. There are $\varphi(\varphi(N))$ of these primroots.

The foregoing tells us that each prime p has primitive roots, indeed, has $\varphi(p^\alpha) \equiv \varphi(p-1)$ of them. One goal of this section is the result below. For won’t of a better term, a posint N is cyclicish if N has a primroot, that is, if $\{\Phi(N), \cdot, 1\}$ is a cyclic group.

8: **Primroot Theorem.** A posint N is cyclicish IFF: Either $N = 1, 2, 4$ or $N = p^\alpha$ or $N = 2p^\alpha$ for some oddprime p and posint α.

Remark. The set of cyclicish numbers is sealed under factors, courtesy (2*).

Evidently -1 is a primroot mod 1, 2, 4. On the other hand, modulo 8 each member of

$$\{\pm 1, \pm 3\} \quad \text{note} \quad \Phi(8)$$

is an involution (under multiplication). So 8 is not cyclicish and thus neither are the higher powers of two.

Suppose we factor $N = J \cdot K$ into co-prime posints. Then the Chinese Remainder Thm gives a ring-isom $\mathbb{Z}_N \cong \mathbb{Z}_J \times \mathbb{Z}_K$ and hence a group-isomorphism $\Phi:

$$\Phi(N) \cong \Phi(J) \times \Phi(K).$$

The only posints with odd Euler φ-value are 1 and 2. So co-prime $J, K \equiv 3$ must have $\Phi(J)$ and $\Phi(K)$ both even; in which case RhS(I) fails† to be cyclic. So the only $N (\neq 1, 2, 4)$ which does not permit such a bad factorization is: $J = 1, 2$ and K is a power of an oddprime.

To prove (8), consequently, we need but establish that each p^α has a primroot. [The case of $2 \cdot p^\alpha$ is immediate, courtesy the (1) group-iso $\Phi(2p^\alpha) \rightarrow \Phi(2) \times \Phi(p^\alpha)$, since $\Phi(2)$ is the trivial gp.]

†The product group has at least two elements of order-2, but an even-cardinality cyclic group has a unique order-2 elt.
9: Prime-squared Theorem. Fixing a prime \(p \), the group \(\Phi(p^2) \) is cyclic. Equivalently, the number of \(p^2 \)-primroots is
\[
\varphi(\varphi(p^2)) = \varphi(p-1) \cdot [p-1].
\]
Indeed, this strengthening holds.

For each \(p \)-primroot \(g \):

9': The sum \(g + pt \) is a \(p^2 \)-primroot for exactly \(p-1 \) many values of \(t \in [0..p) \).

\[\Box\]

Pf. Below, the symbol \(\equiv \) means congruence \(\mod p^2 \).

Let
\[
\omega = \omega_t := \text{Ord}_{p^2}(g+pt).
\]

Then \(\varphi(p) \mid \omega \), since \(g+pt \) is a \(p \)-primroot. By EFT (well...Lagrange's thm), \(\omega \mid \varphi(p^2) \). Thus
\[
p-1 \mid \omega \mid [p-1]p.
\]

So \(g + pt \) is a \(p^2 \)-primroot \(\iff \omega \equiv [p-1]p \iff \omega \neq p-1 \). Establishing (9') is equivalent to demonstrating:

9'': For at least \(p-1 \) values of \(t \in [0..p) \) we have that \(\omega_t \neq p-1 \).

(Exer: Why equivalent? Pigeon-hole Principle must have something to do with it, but what are the details?)

So we may freely assume that, say, \(\omega_0 = p-1 \), i.e \(g^{p-1} \equiv 1 \), in order to prove that the other \(\omega_t \neq p-1 \), i.e to prove: For each \(t \in [1..p) \),

9a:
\[
[g+pt]^{p-1} - 1 \neq 0.
\]

By the Binomial Thm, LhS(9a) equals
\[
[g^{p-1} - 1] + g^{p-2} \cdot \binom{p-1}{1} g^1 t^1 + g^{p-3} \cdot \binom{p-1}{2} g^2 t^2 + \ldots + g^0 \cdot \binom{p-1}{p-1} g^{p-1} t^{p-1}.
\]

The first and third lines are divisible by \(p^2 \). (Why?)

Thus
\[
\text{LhS}(9a) \equiv [g^{p-2} \cdot [p-1] t] \cdot p,
\]
and we want to show this not divisible by \(p^2 \).

Dividing the above by \(p \), our objective becomes \(g^{p-2} \cdot [p-1] \cdot t \not\equiv p \). This latter is true since \(g \not\equiv p \) and \(t \not\equiv p \), since \(t \neq 0 \).

\[\Box\]
Primitive roots for powers higher than two.

Fix integers \(g \) and \(D \) and \(N \geq 2 \). Each exponent \(\alpha \in [D, \infty) \) yields a proposition

\[
Q_g(\alpha) : \quad g^{N^{\alpha-D}} \equiv \begin{cases} 1 \pmod{N^\alpha} \\ \neq 1 \pmod{N^{\alpha+1}} \end{cases},
\]

which may be true or false.

10: Lifting Lemma. Fix \(N, D, g, \alpha \) from above.

i: If \(\alpha \geq 2 \) then \(Q_g(\alpha) \implies Q_g(\alpha+1) \).

ii: If \(N \) is oddprime then \(Q_g(1) \implies Q_g(2) \).

\[\blacksquare \]

Proof. Let \(\beta := \alpha + 1 \) and \(\gamma := \beta + 1 \); so \(\alpha, \beta, \gamma \) are three consecutive integers. Assume \(Q_g(\alpha) \); this implies that

\[
g^{N^{\beta-D}} = 1 + N^\alpha t, \quad \text{for some } t \nmid N.
\]

From this, our goal is to derive \(Q_g(\beta) \). Well

\[
g^{N^{\beta-D}} = [1 + N^\alpha t]^N
\]

\[
= 1 + (N)N^\alpha t + \sum_{j=2}^{N} (N_j)N^j \alpha t^j,
\]

by the Binomial Thm. Rewriting

10a: \(g^{N^{\beta-D}} = 1 + N^\beta t + \left(\frac{N}{2}\right)N^{2\alpha} t^2 + \ldots + \left(\frac{N}{N}\right)N^{N\alpha} t^N \).

Factoring out \(N^{2\alpha} \) gives

10b: \(g^{N^{\beta-D}} = 1 + N^\beta t + N^{2\alpha} \). Integer.

Both (i) and (ii) have \(\alpha \geq 1 \), so \(2\alpha \geq \beta \). Thus

\[\text{Rhs}(10b) \equiv 1 \pmod{N^\beta}. \]

That is, the upper line of proposition \(Q_g(\beta) \) holds.

Non-congruence. Let \(\equiv \equiv \) mean \([\text{modulo } N^\gamma]\). Since \(t \nmid N \), establishing that \(\text{Rhs}(10a) \not\equiv 1 \) will follow from

\[
*: \quad g^{N^{\beta-D}} \equiv ? 1 + [N^\beta \cdot t].
\]

The \(\alpha \geq 2 \) case is immediate, since \(2\alpha \geq \gamma \) and so \(\text{Rhs}(10b) \equiv 1 + N^\beta t \).

For the \(\alpha=1 \) case, our goal becomes

****: \(g^{N^{2-D}} \equiv ? 1 + N^2 \cdot t \),

where here, our \(\equiv \equiv \) means modulo \(N^3 \). We can write \(\text{Rhs}(10a) \) as \(1 + N^2 t + A + B \), where

\[
A := \left(\frac{N}{2}\right)N^{2\alpha} t^2 + \left(\frac{N}{3}\right)N^{3\alpha} t^3 + \ldots + \left(\frac{N}{N-1}\right)N^{N\alpha-1} t^{N-1};
\]

\[
B := \left(\frac{N}{N}\right)N^{N\alpha} t^N.
\]

But \(N^N \equiv 0 \), since exponent \(N \geq 3 \). Thus \(B \equiv 0 \).

Lastly, \(N \) is prime so \(\left(\frac{N}{\ell}\right) \equiv \frac{1}{N} \equiv \frac{1}{N^\ell} \), for each \(\ell \in [2..N] \).

Hence \(\left(\frac{N}{\ell}\right) \cdot N^\ell \equiv 0 \). Thus \(A \equiv 0 \).

\[\blacksquare \]

10c: Appl. Fixing an oddprime \(p \), let’s use the Lifting lemma to get our hands on primitive roots mod \(p^\alpha \). The map \(x \mapsto (x)_{p^\alpha-1} \) from \(\Phi(p^\alpha) \to \Phi(p^\alpha-1) \) is a surjective group homomorphism. So if \(h \) is a \(p^\alpha \)-primroot then it is a primroot mod all lower powers, \(\alpha, \beta, \gamma \).

We’d like to go in the other direction and lift primroots \(h \). Let’s examine the \(Q_h(\alpha) \) property, above (10), when \(N := p \) and \(D := 1 \) and \(g := h^{p-1} \).

Notice that \(g^{N^{\alpha-D}} \) equals \(h^{p-1} \cdot p^{\alpha-1} \), i.e. \(h^{\varphi(p^\alpha)} \).

For \(\alpha = 1, 2, \ldots \), assertion \(Q_g(\alpha) \) is equivalent to

\[
\widetilde{Q}_h(\alpha) : \quad h^{\varphi(p^\alpha)} \equiv \begin{cases} 1 \pmod{p^\alpha} \\ \neq 1 \pmod{p^{\alpha+1}} \end{cases}.
\]

Of course, if \(h \) is known to be \(\perp p \), then \(\widetilde{Q}_h(\alpha) \) is equivalent to

\[
R_h(\alpha) : \quad h^{\varphi(p^\alpha)} \neq p^{\alpha+1} 1,
\]

since the top line of \(\widetilde{Q}_h(\alpha) \) is EFT.

\[\blacksquare \]

10d: Corollary (of the Lifting lemma). Suppose \(p \) is prime and \(h \perp p \). Then

\[
R_h(1) \implies R_h(2) \implies R_h(3) \implies R_h(4) \implies \ldots,
\]

where implication (*) holds when \(p \) is odd.

\[\blacksquare \]
Remark. Trivially $\varphi(p^{\alpha + 1})$ does not divide $\varphi(p^\alpha)$, so
11: [Integer h is a $p^{\alpha + 1}$-primroot] $\implies R_h(\alpha)$
for each $\alpha \geq 0$.

Remark. The following thm, together with Prime-squared Thm (9), will establish the Primroot Theorem.

12: Primroot Lifting Thm. Consider an oddprime p. If integer h is a p^i-primroot for some $i \geq 2$, then h is a primroot mod all powers $\{p, p^2, p^3, p^4, \ldots\}$. \hfill \Box

Proof. Let $\eta_\alpha := \text{Ord}_{p^\alpha}(h)$, i.e the (multiplicative) group $\Phi(p^\alpha)$. So $\eta_1 \equiv \eta_2 \equiv \eta_3 \equiv \ldots$, since $\Phi(p^{\alpha - 1})$ is a quotient-group of $\Phi(p^\alpha)$. Our goal is to proof that η_α equals $\varphi(p^\alpha)$, for each $\alpha \geq 3$, given that
\[
\left\lfloor \eta_2 = \varphi(p^2) \right\rfloor \quad \text{the boxed is the weakest form of the hypothesis.}
\]
Proceeding by induction, suppose $\eta_\alpha = \varphi(p^\alpha)$ and make $\eta_\beta = \varphi(p^{\beta})$ our objective, where $\beta = \alpha + 1$.
Thus $\varphi(p^\alpha) = \eta_\alpha \equiv \eta_\beta \equiv \varphi(p^{\beta})$, i.e.
\[
[p - 1]p^\alpha \equiv \eta_\beta \equiv [p - 1]p^\alpha.
\]
Our goal of $\eta_\beta = [p - 1]p^\alpha$ is thus equivalent to $\eta_\beta \neq [p - 1]p^{\alpha - 1}$, i.e, to $\eta_\beta \nmid \varphi(p^\alpha)$, i.e, to $R_h(\alpha)$.

Finally,
\[
R_h(\alpha) \iff R_h(1) \iff h \text{ is a } p^2\text{-primroot},
\]
courtesy (10d) and (11).

Structure of $\Phi(2^N)$

For $N = 1, 2, \ldots$, let G_N be the (multiplicative) group $\Phi(2^N)$; so $|G_N| = 2^{N-1}$. [Below, angle-brackets $\langle \rangle$ mean “the subgroup generated by”]

13: PoT Lemma. For each $N \in [2..\infty)$: There exists a posodd D_N such that
\[
\langle\rangle:
\]
\[
5^{2^{N-2}} = 1 + 2^N \cdot D_N.
\]
Let $F_N := \langle\rangle G_N$ and $o_N := |F_N| = \text{Ord}_{G_N}(5)$. Then
\[
\langle\rangle:
\]
\[
o_N = 2^{N-2}.
\]

Group G_N is generated by $\{-1, 5\}$. Indeed,
\[
G_N \text{ is isomorphic to } (\mathbb{Z}_2, +) \times (\mathbb{Z}_{2^{N-2}}, +)
\]
via the map generated by $-1 \mapsto (1, 0)$ and $5 \mapsto (0, 1)$.

Proof of $(\langle\rangle)$: High-school algebra gives
\[
\left(\frac{D_{N+1}}{D_N} = D_N + [D_N]^2 \cdot 2^{N-1}\right) \quad \text{by squaring $(\langle\rangle)$}.
\]
This D_{N+1} odd, since 2^{N-1} is even, since $N - 1 \geq 1$. \blacksquare

Pf of $(\langle\rangle)$. Equality $(\langle\rangle)$ implies $5^{2^{N-1}} \equiv 2^{N+1}$
1. I.e, $o_{N+1} \equiv 2^{N-1}$. So statement $(\langle\rangle)$ is equivalent to showing that $5^{2^{N-2}}$ is not congruent to 1, modulo 2^{N+1}.

Now D_N is odd, so $2^N D_N \equiv 2^{N+1} \cdot 2^N$. By $(\langle\rangle)$, then,
\[
5^{2^{N-2}} \equiv 2^{N+1} + 1 + 2^N.
\]
And this RhS is not mod-2^{N+1} congruent to 1. \blacksquare

Pf of $(\langle\rangle)$. The F_N-subgroup, says $(\langle\rangle)$, is half of G_N.

Since $-1 \in G_N$ is an involution, and G_N is abelian, assertion $(\langle\rangle)$ is equivalent to showing that -1 is not in F_N. But were there a k with $[1 + 5^k] \equiv 2^N$, then $[1 + 5^k] \equiv 4$, since $N \geq 2$. But $1 + 5^k \equiv_4 2 \not\equiv_4 0$. \blacksquare
Carmichael’s lambda

The \textbf{Carmichael function} \(\lambda: \mathbb{Z}_+ \rightarrow \mathbb{Z}_+ \) is a variant of Euler-phi: \(\lambda(N) \) is the smallest posint \(K \) so that:

\[\forall x \perp N : \ x^K \equiv 1 \pmod{N}. \]

Equivalently, \(\lambda(N) \) is “the \textit{exponent} of group \((\Phi(N), \cdot, 1) \)”.

In the case of a prime, \(\lambda(p) = \varphi(p) = p - 1 \), since \((\Phi(p), \cdot, 1) \) is cyclic, by Field-Cyclic Thm, (4).

Factoring \(N = p_1^{e_1} \cdots p_L^{e_L} \) into distinct prime-powers gives, by CRT, a group-isomorphism

\[
\lambda(N) = \text{LCM}(\lambda(p_1^{e_1}), \ldots, \lambda(p_L^{e_L})).
\]

When \(N \) is square-free (each \(e_\ell = 1 \) we can specify.

If \(N = p_1 \cdot p_2 \cdots p_L \) with primes distinct, then

\[
\lambda(N) = \text{LCM}(p_1 - 1, p_2 - 1, \ldots, p_L - 1).
\]

\(\lambda() \) is not multiplicative. E.g., \(\lambda(3 \cdot 5) = 2 \neq 4 \cdot 2 = \lambda(3) \cdot \lambda(5) \).

Generalizing Fermat. Posint \(N \) is \textit{fermatish} if

\[
\forall x \perp N : \ x^{N-1} \equiv 1 \pmod{N}.
\]

In other words, \(N \) is fermatish iff

\[
\lambda(N) \mid N-1.
\]

That primes are fermatish was shown by …Fermat.

A fermatish \(N \) is a \textbf{Carmichael number} if it is not prime. Is \(N \) prime? If we test (15) for several values of \(x \), a Carmichael number always fools us.

The first few Carmichael numbers are

\[
\begin{align*}
561 &= 3 \cdot 11 \cdot 17 \\
1105 &= 5 \cdot 13 \cdot 17 \\
1729 &= 7 \cdot 13 \cdot 19.
\end{align*}
\]

16: Korselt’s Thm (1899). A posint \(N \) is fermatish iff \(N \) is square-free and

\[
\psi : \quad p-1 \mid N-1, \quad \text{for each prime } p \mid N.
\]

\textbf{Proof} \(\Leftrightarrow \). By hypothesis, LHS(14') divides \(N-1 \). Hence Rhs(14') \mid N-1. We have (15').

\textbf{Proof} \(\Rightarrow \). We have \(\lambda(N) \mid N-1 \). Since \(N-1 \perp N \), this forces \(\lambda(N) \perp N \). So to show that \(N \) must be square-free, ISTShow \(\frac{p^2 \mid N}{p \mid \lambda(N)} \). So by (14) it suffices to establish

\[
\text{If } e \geq 2 \text{ then } p \nmid \lambda(p^e).
\]

This holds for \(p := 2 \), since the element \(-1\) has order-2 modulo \(2^e \), once \(e \geq 2 \).

For \(p \) odd, this holds since \(\lambda(p^e) = \varphi(p^e) \), by the Primroot theorem, (8).

We now have (14') —which implies, given a prime \(p \mid N \), that \(p-1 \nmid \lambda(N) \). And \(\lambda(N) \mid N-1 \), since \(N \) is fermatish.

17: Corollary. A posint \(N \) is a Carmichael number iff \(N \) is square-free with (16\(\psi \)), and has at least three prime factors.

\textbf{Pf.} To rule out the two-factor case, FTSOC suppose \(N = pq \) with \(p \neq q \) primes. By hyp, \(p-1 \) divides

\[
N-1 \not\equiv p-1|q + |q-1|.
\]

Hence \(p-1 \nmid q-1 \). By symmetry, \(p-1 \mid q-1 \). Both are posints, so \(p-1 = q-1 \).

\textbf{Slightly generalizing} (14). The Primroot thm implies that \(\lambda(p^e) = \varphi(p^e) \), when \(p \) is an odd prime. Write

\[
N = \tau \cdot p_2^{e_2} \cdots p_L^{e_L},
\]

where \(\tau \) is a PoT, and \(p_2, \ldots, p_L \) are distinct odd-primes. The PoT Lemma says \(\lambda(\tau) \) equals \(\tau/4 \), for \(\tau=8,16,32,\ldots \).

So

\[
\lambda(N) = \text{LCM}(\lambda(\tau), \varphi(p_2^{e_2}), \ldots, \varphi(p_L^{e_L})),
\]

where \(\lambda(1)=\lambda(2)=1 \) and \(\lambda(4)=2 \).

When \(N \) has at least one odd prime then

\[
\lambda(N) = \text{LCM}(2, \lambda(\tau), H_1, \ldots, H_L, [p_2^{b_2} \cdots p_L^{b_L}]),
\]

where \(b_\ell := e_\ell - 1 \), and \(H_\ell := [p_\ell - 1]/2 \).
§Index, with symbols and abbrevs at the End

Carmichael function, 7
Carmichael number, 7
Cyclicish, 3
division-ring, 3
Euler phi, 1
Fermatisch, 7
Integral domain, 3
NZM, 4
Order, 1
Order-constrained, 2
Period
of an element, 1
PoT, 1
Primitive root, 3