

on every third line (usually), so that I can easily write between the lines. (Do <u>not</u> restate the question.) Start each essay on a new page.

F2: A graph G is *rigid* if its only automorphism is the identity-auto. Below, N denotes the number of vertices in the graph. Prove your results below, providing good large labeled pictures of all graphs.

For which $N \ge 2$ does there exist a simple rigid graph? Same rigid question, but for loopy multi-graphs.

For which $N \ge 2$ does there exist a rigid *tree*?

Below, *ITree* means an infinite tree with denumerably many vertices and edges. A 0-ITree has *no* leaves, and an ∞ -ITree has infinitely many leaves.

(DIS)PROOF: There exists a *rigid* 0-ITree with all vertices of finite-degree. Same question, but now the vertexset has the stronger *bounded-degree* property.

(DIS)PROOF: There exists a *rigid* ∞ -ITree with all vertices of finite-degree. Same question, but now the vertexset must have *bounded-degree*.

F3: There is an island which, from time immemorial, has been divided into N equal-area farming regions, taking

up the whole island. It is also divided into N equal-area hunting tracts, taking up the whole island.

There are N married couples on the island; the wives hunt and the husbands farm. We wish to assign tracts to wives and farms to husbands so that each couple can build a house on territory common to both. Indeed, territory with at least area $\delta_N \cdot \text{Area(Island)}$. Determine the largest $\delta = \delta_N$ which that works for *every* division of the island into tracts/regions. [Marriage lemma]

F4: Create an interesting non-trivial graph-theory problem, then solve it. EXTRA: Create a graph-theory problem that uses an OGF or EGF in a non-trivial way.

End of Home-F	
-	
F,1:	65pts
F2:	80pts
F3:	80pts
F4:	40pts
Total:	265pts