The Euler-line of a triangle

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/
23 September, 2017 (at 15:19)

Nomenclature. Fix points B and C.
Use BC for the line-segment with those endpts, and use $\text{Len}(BC)$ or just BC for its length.
Use \overrightarrow{BC} for the ray starting at B and traversing C.
Use \overline{BC} for the line that B and C determine.
As sets, then, $\overline{BC} \supseteq \overrightarrow{BC} \supseteq BC$. And $C \in BC$.
[If $B = C$ then the segment, ray and line are degenerate.]

Defn. The “W-altitude” of $T := \triangle UV W$” is the line through W which is orthogonal to edge \overrightarrow{UV}. Three particular points associated with T are:

$$\text{CircumCenter}(T) := \bigcap \{\text{Perp-bisectors of } T \};$$
$$\text{Centroid}(T) := \bigcap \{\text{Medians of } T \};$$
$$\text{OrthoCenter}(T) := \bigcap \{\text{Altitudes of } T \}. \quad \square$$

1: Euler-line Theorem. For triangle $T := \triangle UV W$, let

$$P := \text{CircumCenter}(T),$$
$$Q := \text{Centroid}(T) \quad \text{and}$$
$$R := \text{OrthoCenter}(T).$$

Then this triple is collinear in that order, and

1b: $\text{Dist}(R, Q) = 2 \cdot \text{Dist}(Q, P)$. \quad \square

If T is equilateral, then points P, Q, R coincide; otherwise, no two of P, Q, R coincide. \quad \diamond

Vectors. Take an arbitrary point P in the plane. If we regard P as the origin, then we can view the plane as a vectorspace. How? Well, for each point X, interpret X as the vector from-P-to-X. Write the (Euclidean) length of this vector as $\|X\|$; this is $\text{Len}(PX)$.

2: Lemma. Fix a line-segment BC. Consider a point P on the perp-bisector of BC. Viewing P as the origin of a vectorspace, vector $B + C$ is orthogonal1 to BC.\diamond

1If P is also on BC, then $B = -C$, i.e $B + C$ is the zero-vector. The conclusion remains true, as the zero-vector is orthogonal to all vectors.

Proof. Since $\|B\| = \|C\|$ [because $P \in \text{PerpBisect}(BC)$] points, $P, B, B+C, C$ form the vertices of a rhombus. Thus point $B+C$ is the reflection of P across BC. \diamond

Pf of (1). View P, the circumcenter of T, as the origin of a vectorspace. Define the vector sum

$$H := U + V + W.$$ Since P is on $\text{PerpBisect}(UV)$, vector $U + V$ is orthogonal to \overrightarrow{UV}. Thus $W + [U + V]$ is on the line through W perpendicular to \overrightarrow{UV}. IOWords, H is on the W-altitude of T.

Since vector-addition is commutative and associative, we can write H as

$$V + [W + U] \quad \text{and as } U + [V + W].$$ Hence H also lies on the V and U-altitudes of T. Thus $H = R$. \quad \square

Collinearity. The centroid of T is the average2 of T’s vertices. The upshot: With P viewed as the origin of a vectorspace, we have that

$$R = 1 \cdot [U + V + W];$$
$$Q = \frac{1}{3} \cdot [U + V + W];$$
$$P = 0 \cdot [U + V + W].$$

These points are multiples of a single vector, hence form a collinear triple [in the given order, the order of their scalars] satisfying (1b).

\textbf{When $R = P$ [i.e, the 3 points coincide].} The U-altitude is $\text{PerpBisect}(VW)$, so $\triangle UV W$ is isosceles. Similarly, $\triangle UW V$ is isosceles. Thus T is equilateral.\diamond

2nd proof of (1). Use (1a). Let $s := \triangle uvw$ be the rev-medial triangle of T; so U is $\text{Midt}(\overrightarrow{vw})$, etc.. Using similar triangles [perhaps the Reader can provide the Picture?] each s-median is a T-median. Hence

$$\text{Centroid}(s) = \text{Centroid}(T) \overset{\text{def}}{=} Q. \quad \square$$

Let φ: Plane\rightarrowPlane spin the plane about Q by 180°, then dilate by a factor of two3. So φ sends lines

2Averaging is an origin-invariant notion, BTWay.
3With $(0,0) := Q$ the origin, this is the $(x, y) \mapsto (\text{-}2x, \text{-}2y)$ map.
through \(Q \) to themselves, reversing their orientation, and dilating by two. Thus \(\overrightarrow{PQ} \) is sent to itself, the line \(\overrightarrow{\varphi(P)Q} \). And

\[
\ast: \quad \text{Dist}(\varphi(P), Q) = 2 \cdot \text{Dist}(P, Q).
\]

Note that \(\varphi \) carries \(T \) to \(s \), hence carries \(P \) to \(\text{CircumCenter}(s) \). But \(\text{CircumCenter}(s) \) equals \(\text{OrthoCenter}(T) \). I.e, \(\varphi(P) = R \), thus \(\overrightarrow{PQ} = \overrightarrow{RQ} \), so \(P, Q, R \) are collinear. And (\(\ast \)) is a restatement of (1b). ☻