Entrance. Let Primes(L) mean the set of primes that divide L. An arithmetic progression means a set \(T + M \)Z of integers, where the gap (or modulus) M is a positive integer and the translation or target \(T \) an integer. Use comb also, for “arithmetic progression”.

A comb \(C := T + M \)Z is coprime if \(T \perp M \).

Divisibility Conundra

Here is a soln to LeVeque’s \#tP63: Fix a coprime comb \(C := T + M \)Z and positn L. Prove there exists \(x \in \mathbb{C} \) st. \(x \perp L \).

Short solution. Let \(F \) be the maximum factor of \(L \) such that \(F \perp M \). Letting \(Q \coloneqq \frac{L}{F} \), then,

\[
\begin{align*}
1: & \quad \text{Primes}(Q) \subset \text{Primes}(M) . \\
2: & \quad x \equiv_M T \quad \text{and} \quad x \equiv_F 1 .
\end{align*}
\]

So in order to show that \(x \perp L \), we need show that \(x \perp Q \). FTOSB, suppose \(p \) is a prime with \(p \mid x \) and \(p \mid Q \). This latter forces \(p \mid M \), by (1). Now LHs(2) forces \(T \nmid p \). This contradicts that \(T \perp M \).

Longer solution. Use nested combs.

3: Lemma. Fix a coprime comb \(C := T + M \)Z. Each positn L yields a coprime subcomb \(\hat{C} \subset C \), where

\[
\hat{C} \coloneqq \hat{T} + \hat{M} \cdot Z ,
\]

with \(\hat{M} \coloneqq \text{lcm}(M, L) \).

Proof. Each integer \(\hat{T} \in C \) is \(\perp M \) and defines a subcomb via \(* \). So ISTProduce a \(\hat{T} \in C \) with

\[
\text{Remark.} \quad \text{The above proof is entirely constructive. We actually could avoid the “square-free” step, at the cost of verbiage.}
\]

4: Very weak Dirichlet Thm \(\odot \). Each coprime comb \(C \coloneqq T + M \)Z includes an infinite pairwise coprime subset \(\{ T_j \}_{j=1}^{\infty} \) of (distinct) integers.

Proof. Let \(T_1 \coloneqq T \) and \(T_0 \coloneqq M \) and \(C_1 \coloneqq T_1 + T_0 \)Z. ISTProduce nested combs

\[
C_j \supsetneq C_j \supsetneq C_j \supsetneq \ldots \quad \text{of the form}
\]

\[
C_j = T_j + [T_{j-1} \cdots T_1 \cdot T_0] \cdot Z ,
\]

each a coprime comb.

Ok, at stage \(j \), apply Lemma 3 to \(C_j \) with \(N \coloneqq T_j \).

It hands us a translation amount \(T_{j+1} \coloneqq \hat{T} \) which is coprime to

\[
\text{Lcm}(T_j, [T_{j-1} \cdots T_1 \cdot T_0]) \overset{\text{note}}{=} T_j \cdot T_{j-1} \cdots T_1 \cdot T_0 .
\]

Looks like a wrap, Folks. \(\diamond \)

\(\odot \) Chinese Remainder Thm: Given arb. “targets” \(s, t \in Z \), \(\exists_x \)

with \(x \equiv_M s \) and \(x \equiv_F t \).

\(\odot \) A much stronger result, Dirichlet’s Theorem, asserts that every coprime comb includes infinitely many prime numbers.
5: Two Comb Lemma. Two combs \(C_j := T_j + M_j \mathbb{Z} \) intersect IFF \\
\[\vdash \quad \gcd(M_1, M_2) \mid [T_1 - T_2] \]

Proof. A integer \(x \) is in \(C_1 \cap C_2 \) means there exist integers \(z_i \) with \(x + z_i M_i = T_i \). Subtracting yields \(z_1 M_1 - z_2 M_2 = T_1 - T_2 \). This has a soln \((z_1, z_2) \) exactly when \((\vdash) \). When it does, use either \(z_i \) to determine \(x \).

Two remarks. Suppose \((\vdash) \). The above gives an algorithm to compute an \(x \). I call this fusing two (linear) congruences into a single congruence. Renaming this \(x \) to \(V \) and setting \(L := \gcd(M_1, M_2) \), the algorithm fuses the pair \(y \equiv M_j T_j \) of congruences, into a single \(y \equiv V \) congruence.

The next result, the Pairwise-comb Thm, reminds me of Helly’s theorem on convex sets.

\[6: \text{Pairwise-comb Thm.} \quad \text{Consider combs} \ C_1, \ldots, C_N, \text{where} \ C_j := T_j + M_j \mathbb{Z}. \text{Then the combs mutually intersect IFF each pair intersects. The nonvoid intersection} \ \bigcap_1^N C_j \text{has form} \ T + L \mathbb{Z}, \text{where} \ L = \gcd(M_1, \ldots, M_N). \]

Since \(x \in C_j \) means

\[C_j: \quad x \equiv_{M_j} T_j. \]

Then the combs mutually intersect, producing a comb \(T + L \mathbb{Z} \), where \(L \) is \(\gcd(M_1, \ldots, M_N) \).

Indeed, the combs mutually intersect IFF

\[\vdash: \quad \text{For each pair} \ j < k \ \text{in} \ [1..N]: \quad \gcd(M_j, M_k) \mid [T_j - T_k]. \]

Reduction. Courtesy \((5 \vdash) \), condition \((\vdash) \) is necessary, so we will just show sufficiency.

It suffices to prove the \(N=3 \) case, since a simple induction on \(N \) handles the general case. Considering a congruence \(\sigma: \ x \equiv_K S \), our goal has become:

\[\ddagger: \quad \text{If each pair of} \ (C1), \ (C2) \text{and} \ (\sigma) \text{can fuse,} \quad \text{then} \ \text{Fuse}(C1, C2) \text{can be fused with} \ (\sigma). \]

\[\ddagger\ddagger: \quad \text{Write} \ \text{Fuse(C1,C2)} \text{as} \ x \equiv_L V, \text{where} \ L := \gcd(M_1, M_2). \text{Thus each} \ T_j \equiv_{M_j} V. \text{Hence} \ V - S \equiv_{M_j} T_j - S. \text{With} \ \hat{M}_j := \gcd(M_j, K), \text{then,}

\[V - S \equiv_{\hat{M}_j} T_i - S, \]

since \(\hat{M}_i \mid M_i \). By hyp., \((Ci) \) and \((\sigma) \) can fuse, i.e

\[T_i - S \equiv_{\hat{M}_i} 0. \]

Together, these give \([V - S] \equiv \hat{M}_i \). The upshot is

\[\gcd(\hat{M}_1, \hat{M}_2) \mid [V - S]. \]

Thus \(\gcd(L, K) \) divides \([V - S] \), as desired.

Proof (unfinished). ISTProve that the \(N \) combs intersect. By induction on \(N \), ISTEstablish the \(N=3 \) case.

Given three pairwise-intersecting combs, translate all three so that two intersect at the origin. So we may write these three combs as

\[7: \quad AZ, \ BZ, \ T' + M' \mathbb{Z}. \]

Let \(D := \gcd(T', M') \), \(T := \frac{T'}{D} \) and \(M := \frac{M'}{D} \). ISTFind a point

\[z \in ABZ \cap [T + M \mathbb{Z}], \]

since then \(zD \) is in each comb of \((7) \).

So now \(T \perp M \). By hypothesis, Whoal jk: Proof is broken.

\[\ddagger\ddagger\ddagger: \quad \text{Write} \ \text{Fuse(C1,C2)} \text{as} \ x \equiv_L V, \text{where} \ L := \gcd(M_1, M_2). \text{Thus each} \ T_j \equiv_{M_j} V. \text{Hence} \ V - S \equiv_{M_j} T_j - S. \text{With} \ \hat{M}_j := \gcd(M_j, K), \text{then,}

\[V - S \equiv_{\hat{M}_j} T_i - S, \]

since \(\hat{M}_i \mid M_i \). By hyp., \((Ci) \) and \((\sigma) \) can fuse, i.e

\[T_i - S \equiv_{\hat{M}_i} 0, \]

Together, these give \([V - S] \equiv \hat{M}_i \). The upshot is

\[\gcd(\hat{M}_1, \hat{M}_2) \mid [V - S]. \]

Thus \(\gcd(L, K) \) divides \([V - S] \), as desired.

\[\ddagger\ddagger\ddagger: \quad \text{Write} \ \text{Fuse(C1,C2)} \text{as} \ x \equiv_L V, \text{where} \ L := \gcd(M_1, M_2). \text{Thus each} \ T_j \equiv_{M_j} V. \text{Hence} \ V - S \equiv_{M_j} T_j - S. \text{With} \ \hat{M}_j := \gcd(M_j, K), \text{then,}

\[V - S \equiv_{\hat{M}_j} T_i - S, \]

since \(\hat{M}_i \mid M_i \). By hyp., \((Ci) \) and \((\sigma) \) can fuse, i.e

\[T_i - S \equiv_{\hat{M}_i} 0, \]

Together, these give \([V - S] \equiv \hat{M}_i \). The upshot is

\[\gcd(\hat{M}_1, \hat{M}_2) \mid [V - S]. \]

Thus \(\gcd(L, K) \) divides \([V - S] \), as desired.

\[\ddagger\ddagger\ddagger: \quad \text{Write} \ \text{Fuse(C1,C2)} \text{as} \ x \equiv_L V, \text{where} \ L := \gcd(M_1, M_2). \text{Thus each} \ T_j \equiv_{M_j} V. \text{Hence} \ V - S \equiv_{M_j} T_j - S. \text{With} \ \hat{M}_j := \gcd(M_j, K), \text{then,}

\[V - S \equiv_{\hat{M}_j} T_i - S, \]

since \(\hat{M}_i \mid M_i \). By hyp., \((Ci) \) and \((\sigma) \) can fuse, i.e

\[T_i - S \equiv_{\hat{M}_i} 0, \]

Together, these give \([V - S] \equiv \hat{M}_i \). The upshot is

\[\gcd(\hat{M}_1, \hat{M}_2) \mid [V - S]. \]