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Entrance. Use ¢ for one of the sqroots of 1. Thus
i2 = 1 = [-i]2. Henceforth, z,y, u,v denote reals, un-
less otherwise stated. A complex number can be writ-
ten in form [z-1] + [y-7]. The real and imaginary
parts of z == [z-1] + [y-1] are

Re(z) =2 and Im(z):=y.

(N.B: We will usually write [z-1] 4 [y-3] as = + 4y or as z + yi.)
The std picture of C is called the Argand plane. It

Webpage http://people.clas.ufl.edu/squash/

MSlas:

MS1b:

is useful to interpret algebraic operations, addition,
multiplication, complex conjugation, geometrically on
this plane.

The complex conjugate of z := x + 1y is written
as z. It is

note

zZ = Re(z) — Im(2)2 r—yi.

Evidently V(,w,z € C, with z = x + 1y:

(+w=C(+w and w=( w;
Re(z) = [#4+7%]/2 and Im(z) = [z —Z]/[2i];
27 = |2f? 228 42 42,

Sequence notation. A sequence X abbreviates
(%1, 29,23,...). For a set Q, expression “X C Q7
means [Vn: z, € Q]. Use Taily(X) for the subse-
quence

(1:N3 IN+4+1y TN+2 - - )

of X. Given a fnc f:Q2—A and an (2-sequence X, let

f(X) be the A-sequence (f(z1), f(x2), f(z2),...).
Suppose €2 has an addition and multiplication. For
Q-seqs X and ¥, then, let X+ ¥ be the sequence whose

n™ member is z, + y,. L.e
X+y = [ne—|zn+uyl]-

Similarly, X -y denotes seq [n > [ yn]].

A glance at Metric Spaces

The usual metric on C is
Dist(¢,w) = [¢ — w].

We will need to handle at least four MSes [metric
spaces]: The Reals, the Complexes, C x C and the
Riemann Sphere. As such, let’s simplify and look at
general metric spaces.

A metric space [MS] is a pair (X, m) where X is
a set, and m: XxX—[0,00) is a metric. A metric m
satisfies that Vw,z,y,z € X:

m(w,w) = 0.
If m(w,z) =0 then w = z.
MS2: m(y, Z) = m(z, y) [Symmotry]

MS3: m(w,y) < m(w,z) + m(x,y). [A-Inequality]

Page 1 of 29



Prof. JLF King

Fix a point p € X and a “radius” r € R. Define open
ball, closed ball, sphere and punctured (open)
ball as follows:

Il
PN
S
m
ol
/\/3\/-\

= {weX|0<m(w,p)<r}.

[Chasing definitions: When r is negative then all four sets are
empty. When r = 0 then Baly(p) = @ = PBalg(p). And
CldBalo(p) = {p} = Sphy(p).] For non-negative a and r,
define the open annulus as [form is Ann3% ()]

Am?(p) = {weX|a<m(w,p)<r}.

This is the emptyset unless r > «, in which case the
thickness of the annulus is » — a. The superscript «
and subscript r are, respectively, the inner-radius
and outer-radius of annulus Ann{(p). An inner-
radius of zero has Ann’(p) = PBal,(p). Note that
Ann¢ (p) is the exterior of a closed-ball. I.e

Anng (p) = X\ CldBal,(p).

Seq.-Limit. Seq X C X conwverges to a point p € X
if m(z,,p)—0 as n "oo. Le, if for each £>0, there
exists index K st. Vn > K, we have m(z,,p) < €.
Equiv.: Ve>0, 3K € Z, st. Tailg(X) C Bal.(p).

We indicate this convergence by lim(X) = p, or as

[ lim xn} = p. Let’s now justify the equal-sign.
n—o0

1: Unique-limit Lemma. In MS (X, m), suppose a se-
quence X converges to points p and q. Then p = q.¢

Pf. FTSOContradiction suppose p # q. By (MS1b),
distance m(p,q) is positive; let’s call it 2H. So it
suffices to produce a point b € X with

*2 m(b,p) < H and m(b,q) < H.

For then, symmetry (MS2) yields m(p,b) < H. Now
our Triangle Inequality chirps in with

NA-Ineq
2H & m(p,q) < m(p,b)+m(b,q) "ol

i.e, that 2H < 2H. 3¢

[Length H is half the distance, and b is close to both.]

A glance at Metric Spaces
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Obtaining such a b. Of course, the only place
we could get such a b is from X; we’ll show, for a large
enough index M, that b := zjs satisfies (x). To do
that, we’ll simply apply the defn of limit.

Since lim(X) = p, there exists index K such that
[n>K] = m(zy,,p) < H. And Jan index L such that
[n>L] = m(zy,,q) < H. Happily, M := Max(K, L)
dominates both K and L, so b := x fulfills (x). ¢

Open/closed sets. A set U C X is open [in X] if
U is a union of open balls (possibly ooly many).

The complement [in X] of an X-subset S is X\ S.
If X is understood, the complement may be written
as S¢ or G(9).

A set E C X is closed [in X] if its X-complement
is open.”! If a set is both open and closed, then it
is called clopen. [In C, the only clopen sets are the whole
space, C, and its complement @, the empty set. Some MSes,
however, have non-trivial clopen subsetsl]

For a subset S C X, a pt p € .S is “an interior-
point of S” if there exists an open ball B with
p € B CX. Le, Ir>0 with Bal,.(p) C S. Relations
“neighborhood of” and “interior-pt of” are inverses:
Set S is a “neighborhood of p” IFF p is an interior-
point of S. Use nbhd to abbreviate “neighborhood”.

The interior of S is

Itr(S) = {p €S |pis an interior-pt of S}.

Equiv., the interior of S is the union of all open sub-
sets of S. Equiv., Itr(S) is the largest open subset
of S. Consequently, S is open IFF Itr(S)= 5.

The closure of S is

Cl(S) = {p € X | ¥r>0, open ball Bal,(p) hits S} .

Equiv., CI(S) is the intersection of all closed supersets
of S. Equiv., CI(S) is the smallest closed superset
of S. Consequently, S is closed IFF CI(S) = S.
Closure-of and Interior-of are dual notions in that
C(CIE)) = 1tr (C(E)).
The “boundary of set S [in X]” is

8(S> = {p €X hits both S and X \ S.

Vr>0, open ball Bal,(p) }

So 9(S) = CI(S) N C1(S°).

“ITypically, most sets in a MS are neither open nor closed.
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A set S C X is limit-closed [in X] if V§ C S:
Whenever p := lim(S) exists in X, then p € S.

2: Limit-closed lemma. Set E C X is closed IFF FE is
limit-closed. O

Pf(=). Consider a seq § C E and limit p := lim(s)
in X. Were p in the complement U := X \ F, then
Jr>0 with Bal,(p) C U. But this implies, for each n,
that m(s,,p) = r. And that contradicts the supposed
convergence of S to p. ¢

Pf(«<). FTSOC, suppose FE fails to be closed. Then

U = X~ FE is not open, so dq € U satisfying that

every ball about q sticks out of U, that is, hits F.
Consequently, for n = 1,2, 3, ..., the intersection

EnN [Ball/n (q)]

is non-void. Pick a point in that intersection, and call
it, say, z,. Then [lim,_,~ 2,] equals q, contradicting
that E was limit-closed. ¢

Defn. A set E C X is compact if each seq S C F

admits a subsequence € C § which converges to a

point in E. That is, there exist indices n; < ng < ...
and a point p € E s.t [ lim s,,| = p.
. . kﬁoo . .

The above Limit-closed lemma implies that compact

sets are automatically”? closed. O

Fnc limits. Consider MSes (X,m) and (€, p),
points p € X and w € Q, and a fnc h: [X~{p}|—>Q.
Expression

{lim h(z)} = w

2—p

means: Ve>0, 46>0 such that

Vz e X: If 0 < m(z,p) < ¢ then u(h(z),w) <e.
3. Equiv. h (PB?LL;([))) - Bala(w).

Equiv.: PBal(g(p) C ht (Bals(w)> .

“20ur defn of compact is for MSes, and it generalizes to topo-
logical spaces. In a general topological space, is possible for a
compact set to not be closed.

Back home to C
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These balls are in different spaces, with different met-
To write, for example, this last property pre-
cisely, we’d write

m-PBals(p) C h™ (M—Balg(w)).

rics.

3a: Unique fnc-limit Lemma. With notation from

above [WNFAbove], if

[gl_I}rll)h(Zﬂ = w1 and

[lim h(z)] = wa,

zZ—=p

then w1 = ws. Pf. See proof of Unique-limit Lemma.

3b: Defn.  Fnc ¢g:(X, m)—(Q, p) is continuous at
a point peX if li_r% g9(z) = g(p). We say “g is con-
z

tinuous” if g is cts at each point in Dom(g). O

3c: Thm. [WNFAbove|. Fnc g is continuous at p IFF

For each sequence zZ C X, if lim(Z) = p,
then lim(g(Z)) = g(p).

Proof. Exercise. O

4a: Open pullback lemma.  Fnc h: (X, m)—(€2, 1) is
[everywhere| cts IFF for each €-open set ACS, its
pullback h™'(A) is open in X.  Proof. Exercise. ¢

4b: Erample. For a cts h, pullbacks preserve openness.
However, push-forwards need not. E.g, the sine fnc
sin:R—(-3,3) is cts, and U = (0, 2F) is open in R.
Yet the push-forward set sin(U), is the half-open in-
terval (0, 1], which is not an open [nor closed] subset
of the output-space, (-3, 3). O

Back home to C

As a nice exercise, let’s state and prove a fact about
subsets of C. [The same result holds in every MS.|] Let
m(z,w) := |z — w| denote the usual metric on C.

5: Thm. For an arbitrary S C C, the set
E = S UJ9O)

is closed. O
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Set-up. ISTProve that U := [C \ E] is open.

FTSOC, suppose U not open. Then there exists a
point p € U such that p ¢ Itr(U). Imagine we could
establish

ba:  Vr >0, Japoint ¢ € S with m(q,p) <r.

Then every ball about p, hits S. But every ball also
hits C\.S, since the ball owns p € U. And this implies
the contradiction that p is a boundary-pt of S. [

Proof of (5a). Fix an r>0. Since p is not a U-interior-
point, 3b € E with m(b,p) < r. If b is in S, then we
are done.

Otherwise, b must be in 9(S). Recall that difference

r = m(b? p)

is positive. Since b € J(S), there are points of S
arbitrarily close to b. In particular, d¢g € S with

52 m(¢g,b) < r — m(b,p).
Thus
A-Ineq by ()
m(g;p) < m(g,b)+m(b,p) < r

as desired. ¢

Polynomials over C. An old theorem, slightly
misnamed:

6: Fundamental Theorem of Algebra (Gauss and others).
Consider a monic C-polynomial

h(t) = tN + BN_ltN_l + ...+ Bit+ By.
Then h factors completely over C as

ht) = [t—Z1] - [t—Zo] .o [t—2Zn], O

for a list Zy,...,Zn € C, possibly with repetitions.
This list is unique up to reordering.

If h is a real polynomial, i.e h = h, then h fac-
tors over R as a product of monic R-irreducible linear
and R-irred. quadratic polynomials. The product is
unique up to reordering.  Proof. See (16e, P.10).

[There is a proof in my A Primer on Polynomials pamphlet] .

Back home to C
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Cauchy-Riemann eqns. On an open set D C C,
consider a fnc h:D—C, which we have written as
h(z +iy) = u(z,y) + iv(x,y), giving names to its
real and imaginary parts.

A point x + iy can also be written in polar coor-
dinates as re*?, with r,§ € R. So we can view u
[and v] either as a fnc of (x,y) or as a fnc of (r,0).
Differentiability of h() at a particular point z, forces
equality of partial-derivs at z. The eqns are called
the Cauchy-Riemann eqns:

Tas Cartesian:

Tb:

Uy = Uy and Uy = Vg.

Polar: T U = V9 and U = T Up.
Proof of (7a). Firstly, for h to be diff’able at z means:

Our h is defined in a nhbd of z, and lim W
Az—0 z
exists in C.
Let w:= h(z) and Aw = h(z+ Az) — h(z).

[CASE: Pure real: Az = ij
equals

Computing, Aw

u(x+ Az, y) + tv(z + Az, y) — [u(z,y) + v(z,y)]
= [u(z + Az, y) — u(z,y)] + i[v(z + Az, y) —v(z,y)].

Aw

Hence, X7 equals

u(z + Az, y) — u(z,y)
+
Ax

Sending Az — 0 yields that

. v(z + Az, y) — v(z,y)
’L.
Az

B lim ¥ =

Az Az um(x, y) + 2 Uﬂ?(x? y) 0

[CASE: Pure imag: Az := iAyJ Our Aw equals

[u(z, y+Ay) — u(z,y)] + i[v(z, y+Ay) — v(z,y)].

Aw
SO Az

i.e

w(z, y+Ay) — u(z,y) + i v(z, y+Ay) —v(z,y)
1Ay 1Ay ’

equals

Ay

Launching Ay — 0 reveals that

: lim &2 =

Ars0 Az 7i'uy(xay> + Uy(.’lﬁ,y).
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Equating the real parts of (1) and (1) gives LhS(7a).
And equating the imaginary parts produces
RhS(7a). ¢

Proof (7a)
is

= (7b). The CoV from polar to cart coords

(z,y) = (rcos(0),rsin(0)) .

Abbreviating ¢ := cos(f) and s = sin(6), then,”?

ou {871 ax}

Ou Ou Oz [8u y
or Loz or

5y ) = lieecl + [y

Computing all the first-partials gives

Up = Ug'C + Uy'S; Uy = #[ux-s — uy'c] ;

Up = VUg'C + UyS; vg = rlvye — vgs].
Applying (7a) to write all the partials ITOf z, gives

= Up'C — UpS; Up = T[ugps + vgcl;

It v = vgc+ ugs;  vg = rlugc — vy,

Comparing LhS(t) with RhS(f), and RhS(f) with
LhS(1), yields (7b). ¢

Tc: Caveat. If z is not the origin, i.e r # 0, then the
converse (7b)=-(7a) holds. However, at the origin
(7b) always holds, hence has no content. [E.g, ue(0)
is always zero, since [0 — 0-exp(i0)] necessarily has derivative

zero.] So at the origin, (7b) does not imply (7a). [

8: Open-set Differentially-path-connected Thm. Con-
sider a path-connected subset E C C. If E is open,
then Vp,q € FE, there exists a differentiable path
2:[0,1]—FE with z(0) = p and z(1) = q. O

Two consequences of the Cauchy-Riemann eqns.:

9a: Constancy theorem.  Consider a path-connected
open D C C, and holomorphic h: D—C.

iz If ¥ =0, then h is constant on E.
ii: If h and h are holomorphic, then h = 0.

itiz If |h| is constant, then h is constant. O

“3In Newton’s notation, ug-c is ug (rcos(8),rsin()) - cos(0).

Back home to C
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Pf of (i). Given p,q € D, ISTProve h(q) = h(p).
Our (8) gives a diff’able z:[0,1]—F with z(0) = p

and z( )—q So
1
t)dt :/ [hoz]
0

o= [t
= h(2(1)) — h(2(0))
= h(q) — h(p). ¢

Pf of (ii). Write h with real and imaginary parts, as
h=wu+4v. So h =u+ i-[v]. C-R eqns of h thus say
Uy = Uy, and of h say u, = -vy. Hence u; = 0. The
other C-R eqn shows v, = 0. Thus A’ note Uy + 12Uy
is identically zero. Now apply (i). ¢

Pf of (iii). If |h| = 0, then h = 0. So WLOG, number
Kk = |h|? # 0. As h is never zero, I may divide to con-
clude that k() = a0y is holomorphic. Now apply (ii). ¢

9b: Harmonic lemma. Suppose h is holomorphic an
open D C C. Then [Reoh] and [Imoh] are each

harmonic on D. Proof. See Brown&Churchill. O

Path-independence and differentiability. Here
is the non-trivial part of the thm from P.141 & P.146 of
Brown&Churchill, 9tP-ed..

Say that fnc f: D—C has the path-independence
property [PIP] if for all closed-contours C: The
contour-integral [ f exists, and equals zero.

10a: Path-indep theorem. On an open D C C, sup-
pose f:D—C is continuous. If f has the path-inde-
pendence property, then there exists a differentiable
function g: D—C, with ¢’ = f. O

Proof. WLOG D is non-void and connected, since we
can argue for each path-connected component sepa-
rately.

Fix a “base-point” zy € D. For each p € D there
exists a contour C from zy to p, since D is path-
connected, and courtesy (8). Define g(p) = [ f; this
is well-defined because f has the PIP.

To show that g is diff’able at an arbitrary p € D,
and that ¢’(p) = f(p), we fix an € > 0. ISTProduce
a 0>0 such that for all z € PBals(p):

b g(p+A2)z— 9(p) o)l <,

where we are writing z as p+ Az.
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Obtaining . Since D is open, Jdr > 0 such that
Bal,(p) C D. And since f is cts at p, there exists
a>0 so that each z € Bal,(p) has |f(z) — f(p)| < e.
Let ¢ := Min(r, «), which we note is positive.

The Estimate. Fix a point z € PBals(p); so
displacement Az := z — p has |Az| < 4.
Let L denote the line-segment contour from p to z.
We parametrize L as w:[0,1]—D, by
w(t) = p + [t-Az]. So
w'(t) = Az.

—9(p) :/f
—Az/f

Dividing by Az [Exer: Why is Az # 07], then subtracting

Thus
'(t)dt

[t-Az]) dt

g(p+Az)

note

/1f(p) di

0

f(p)

from both sides, yields that

9(P+Az) — g(p) /1 [f (p+[tAz]) — f(p)} dt

A - flp) =

Taking abs.values and using our Triangle-Ineqg-for-
Integrals, yields

g(p+Az)—g(p) £(

1
[ erae) p)| < [ 17(p+[ta2]) -
But each p 4 [tAz] is in the d-ball about p. Hence the
integrand in (f) is <e. Thus RhS(}) <e-[1 —0] =¢,
yielding (), as desired. ¢

C-exponential

p)|dt.
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C-exponential

For z := z-1+4+y-¢ with x,y € R, its complex conju-
gate Z is -1 — y-¢. Its real and imaginary parts are

zZ+ z zZ —Z
I =y = .
5 m(z) =y 51

By the Pythagorean thm, |2|*> = 2% +¢* = 2%.

Re(z) = o =

For pv € C,note, py+v=p+vand - v=pn-7.
Let’s extend the exponential fnc to the complex
plane.

11a: Defn. For z € C, define
>0 1
= —2" =1  EaR T LAl
exp(z nz::n +2+ 52"+ 527 + ;
o [

cos(z :22— 1— 424044

: = [-1]* 2k+1 _ 1.3, 1.5
sin(z) -—];) [2]{:—1—1]!.2 =z — 52 + 3% —
Fach series has co-RoC. O

Since we have absolute convergence of each series
at each z, we can re-order terms without changing
convergence.

11b: Lemma. Fix o,3 € C. Then

et el = e¥tP O

Proof. For natnum N, recall the Binomial thm which
says that

> (W-alst =

j+k=N

[a+ BN

where the sum is over all ordered-pairs (j,k) of
natnums. By its defn [and abs.convergence], e®e? equals

o0 o0 1

> o] {Zklﬁk} = Y[ X ]
= = 7! N=0 j+k=N "
But ﬁ equals % . ],L,;, Hence e®e? equals
o 1
oﬂﬂk by (» —[a+ BN
Sz )= £
which is the defn of e® 17, ¢
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11lc: Lemma. For 0,x,y,z complex numbers:

11.1: e = [cos(h) + isin(f)] = cis(f). Hence
20 -0 10 _ i
11.2: S —; - cos(), % = sin(0) . Also,
i
11.3: e®% = e%.e¥ = &% [cos(y) + isin(y)], so

11.4: e % = e®[cos(y) — isin(y)],

since cos(-y) = cos(y) and sin(-y) = -sin(y). When 0
is real, then,

11.5: Re(e'?) = cos(d) and Im(e!’) = sin(f).

Since the coefficients in their power-series expansions
are all real, our exp(),cos(),sin() fncs each commute
with complex-conjugation, i.e

11.6: exp(z)=exp(z), cos(z)=cos(Z), sin(z)=sin(z) ;

Finally, the familiar translation-identities

11.7: cos(z — §) =sin(z), sin(z+ ) = cos(z)
extend to the complex plane. O
Proof. Exercise, using (11b). ¢

Examples from Fri.17Feb

Two examples from class.

12: cos-sin zeros Lemma. All zeros of [complex] cos()
lie on the real axis. In particular, cos() has only one
period, that of 2v.  Both stmts hold for sin(). ¢

Proof for cos. Fix a z = x + 1y st. cos(z) = 0. Thus

0 = 2cos(z) = exp(t-[x+1y]) +exp(-t - [+ ty])
= exp(-y + ix) + exp(y — ix)
= e Ycis(z) + eYcis(-x).

Since these summands cancel, they must have equal
abs.values. Thus, since z and y are real,

e e = e¥-cis(z)] = &Y |cis(-x)| = €Y.
But R-exp() is 1-to-1, so (%) implies that -y = v.
Hence y = 0, i.e z is real. ¢

Examples from Fri.17Feb
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Integration example. Fix a real o > 0. To compute

o
J = / e’ dt,
0

we could directly use an antiderivative: So J equals

IE %eit = -ife’> — 1].

t=0

Alternatively, we can decompose into real and imag-
inary parts, as J = U + &V, where

V = /Oasin(t) dt = —cos(t)’Z: = —[cos(a) — 1]
and
U = /Oc::os(t) dt = sin(t)‘Z: = sin(a).

With S := sin(t) and C := cos(t), then, U + 1V equals
S§—i[C—-1] = - [iS+C —1]

= —i-[cis(ar) — 1]

note RhS(T),

as expected. In this instance, direct integration was
faster than breaking the integrand into real and imag-
inary parts. ]

Filename: Problems/Analysis/Calculus/complex-notes.jk.latex



Prof. JLF King

Cauchy-Goursat and friends

Let SCC mean “positively orlented simple-closed-
contour”. For a SCC C, have C be the (open) region C
encloses, and let C mean C together with C. So Cis
Ccu C it is automatically simply-connected and is a
closed bounded set.

CONVENTION: Each circle mentioned, e.g Sph,.(p),
is also viewed as an SCC, i.e, as positively oriented.

13a: Cauchy-Goursat Theorem (C-Goursat). ~ Consider
SCC C, and function f which is holomorphic on C.

Then /Cf:O. O

13b: Cauchy Integral Formula (CIF). For a fnc f which
is holomorphic on C, where C is a SCC, then

ERO

2wt Jc z —w

f(w) =

)

for each point w € C. O

Proof outline. ~ Take r>0 small enough that circle
Sy := Sph,.(w) is enclosed by C. Since h(z) = 1z

is holomorphic on the annulus bounded by C and g’r,
our C-Goursat implies that [-h = [g h. Now send

r\,0 and use that f is cts at w. Etc. ¢

13c: Generalized CIF (GCIF). A function f which
is holomorphic on open set D, is ocoly-differentiable.

Moreover, consider a SCC C with C c D. Then for
each point w € C, we have that

n! f(z)
i /C [z — w]ntl dz,

forn=0,1,2,.... O

f(w) =

Pf sketch. For each n, verify that = (]BLH satisfies the
conditions for differentiating under the the integral-
sign w.r.t w. Then differentiate. ¢

13d: Morera's theorem. On open set D suppose cts f
has path-independence property: [-f = 0 for each
closed contour C C D. Then f is holomorphic. O

Cauchy-Goursat and friends
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Proof. By Path-indep thm (10a, P.5), our f has an
antiderivative g. Courtesy GCIF, this g is ocoly-differ-
entiable, hence f is differentiable. ¢

14.1: The set-up for multiple poles. Consider simply-
connected D, a SCC C C D, and distinct points

Wi, ..., Wy, in C. Positive integers Ji,...,Jr deter-
mine a polynomial
w1 P(2) = [z—wi]” [z —wo] . [z —wp]t.

For k = 1,...,L, let Py(z) be product RhS(x), but
omitting the k*-term. E.g,

L
Py(2) = [z —wi]”t - [z —wy]”? H [z — wg]”* .
k=4
Lastly, consider SCCs Eq,...,Er in D, which avoid
all the w-points. Moreover, suppose Ej encloses
point wy,, but none of the other w-points. ]

14.2: Corollary. Using notation from (14.1), suppose
h is holomorphic on D. Then

" (2) L h(z) d
) P (2) g, P(2)
Further, defining hy(z) = ;k((zz)) then
I: hz) = / 7}%(2) dz.
e, P(2) Ex [2 — wi]’r

Since hy,() is holomorphic on Ey, the RhS(}) can be
computed by GCIF, theorem (13c) O

14.3: CIF ezample. [Problem #2a,bP170] Let C be
the radius=2 circle Sphy(%); it passes through points
-1 and 32. We seek to compute

1
: J = dz.
e /c 244
Soln a:  Setting a := 2¢ and B := -2¢, we factor

2?2 + 4 as [z — a-[z — B]. So point « is enclosed by C,
whereas point 3 is outside of C. Hence f(z) = Zi 5

is holomorphic on C. Writing the above integrand as
I(2) then, CIF (13b) yields

z—a?

J =2mi- f(a) = 2mi -
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The second part of the problem asks us to compute

1
b: Jp = —dz.
i b /c[22+4]2 ‘

Soln b: The integrand’s denominator factors as
[z — a)?[z — B]?. Rational fnc h(z) = ﬁ is holo-
h(z)
[z—a]?’

then, applying GCIF [thm (13c)] with n=1, gives

morphic on C. Writing the above integrand as

Jp = ? () = 2mwi- B ().
Note h/'(z) = ﬁ, so W(a) = -2/[4i]® = 1/[324].
Consequently,

1

15a: Cauchy Inequality.  Fix w € C. For r>0, let
C, == Sph,(w). Consider an f which is holomorphic
on C, and let M, be the maximum of |f| on C,. Then
Vn € N: nl M,

F )| < - 0

T.n

Proof. By GCIF, and Triangle-Ineg-for-Integrals,
n! |f(2)]

}f(")(w)} < o Je. Iz — |t |dz|
- | 7)1
= % <27 ¢

15b: Liouville Thm. Suppose f is entire and is bnded,
i.e, there exists a number >0 with |f| < 8 on C.
Then f is constant. O

Proof. ISTShow that f’ = 0.
Applying Cauchy Inequality at n=1 gives
VweC: |f(w)] < 2,

for every r>0. Now send r _"oo. ¢

Cauchy-Goursat and friends
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15¢: Gauss mean value thm (Gauss-MVT). “The arclength-
average on a circle, of a holomorphic function, is its value at
Suppose f is holomorphic on region E,
where C := Sph,.(p) is a circle. Then

the center.”

1
el LrGre = 1. 0

Proof. Parametrize C by z(t) := p + re®*; so z() maps
[0,27] onto C. Noting 2/(t) = riet’, our CIF implies
that f(p) equals

27 t .
L, (2) dz = 1, f(z( ) riet! dt
2nt Jcz—Pp 271 Jo rett
1 21
= crdt
o [ stetw ra
1 2m
Een() JREEOR:
Since |2/(t)] = |rieit| = r, this last integral equals
Jcf(2)-|dz|. Hence (x). ¢

16a: Local-constancy lemma. Suppose f is holomor-
phic on an open ball B with center point p. If number
|f(p)| dominates |f| on B, then f is constant on B.{

Proof. Courtesy Constancy thm (9a, P.5), ISTShow
| f| constant on B. Fixing a circle C := Sph,.(p) in B,
then, ISTShow:

x:  The fnc |f|, on C, equals number | f(p)|.

By hypothesis, difference g(z) = {|f(p)| - |f(z)}}
is non-negative on C, and is cts, since f is cts. We seek
to show that ¢ is identically-zero, which will follow
from Non-neg Lemma (33, P.21) if we can establish
that arclength-integral [-g(z)|dz| is zero.

Integrating. Recall flp) = ﬁ@fcf(z)\dz\,

courtesy the Gauss-MVT. Taking abs-values,
1@ < oo L]
PIIS Ten(C) Je

by hyp

1
< g L@k = 1)l
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The ends are equal, so all three quantities are equal.
In particular, the two integrals are equal, so their dif-
ference

Ll = 1] 4az)

is zero. And that is the arclength-integral of g. ¢

16b: Maximum-modulus principle (MaxMP).  Suppose
holomorphic f on domain D is such that |f| attains
a maximum on D. Then f is constant on D. O

Proof. We use the “overlapping-ball argument”.

Suppose pe€D is a point where |f| attains a maxi-
mum on D. Fixing an arbitrary point ¢€D, we seek
to show that f(q) = f(p).

Fix a polygonal path CCD going from p to ¢q. Since
D is open, and C is closed and bounded, there exists
[this uses the completeness property of ]R] a sufficiently small
£>0 so that for every point w € C, ball Baly.(w) lies
in D. Pick a sequence of points

wo = p, W, W2, ...,

WN-1, WN =(¢

on C, so that each distance |w, — w,—1| < . Thus
each ball B,, := Baly.(w;,) owns the next point, wy41.

Applying Local-constancy, (16a), to By, says f is
constant on By. So f(wi) = f(we) 222 f(p). Thus
|f(w1)| dominates |f| on D, hence on B;. We can
now invoke Local-constancy on Bj, to conclude that
f(w2) = f(p), since we € B;. Iterating, we eventu-

ally show that f(g) == f(wn) = f(p). ¢

16¢: MaxMP corollary. Suppose f is cts on a closed-
bounded non-empty region R C C which is path-
connected. If f is holomorphic and non-constant on
the interior of R then:

Fnc |f| attains a maximum at at-least-one
point of OR, and never on the interior of R.

O

16d: Minimum-modulus principle (MinMP). Suppose h
is non-constant and holomorphic on domain D. If h is
never zero on D, then |h| does not attain a minimum
on D.  Proof. Apply MaxMP to f := % O

Cauchy-Goursat and friends
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16e: Fund. thm of Algebra.
nomial h has a C-root. (Consequently, h splits i.e, a monic

[z—rn]) O

Every non-constant poly-

h factors completely as h(z) = [z —r1]-...-

Proof. WLOG h is monic. Since h is non-constant,
its high-order term has form 2V for some N>1. As
|z| ‘o0, this term dominates all the other terms in h.
So |h(z)|—00 as |z| /oo. Hence there is a sufficiently
large closed ball B := CldBal,(0) so that:

There is strict inequality |h(z)| > |h(0)],

for each z € C\ B.

Now, FTSOC suppose h has no root, i.e, |h| is
never zero. Fix a B satisfying (x). Since B is closed-
bounded and |h| is cts, our |h| attains a minimum
on B, hence, courtesy (x), on all of C. But this con-
tradicts the Minimum-modulus principle. ¢

16f: Cone-boundedness Lemma. For a holomorphic f
on the unit ball B := Bal;(0), suppose

F(0)=0 and Vze B:|f(z) <1.
Then
e |f/(0)’ < 1. On B, furthermore: \f(z)] < ’Z’ .

Conversely, if |f'(0)| =1 or there exists a non-zero
w € B with |f(w)| = |w|, then f is linear. Le, f has
form f(z) = M-z, for some M € C with [M|=1. ¢

Proof. It follows from later work [Taylor’s thm and
friends| that ) f(2))z ,ifz#£0
S0 Lifz=0

is holomorphic on B. On circle C, := Sph,.(0), note
that |g| is (upper-)bnded by 1, since |f| is bnded by 1.
Obtaining (). Fix weB and radius with |w|<r<1.
Our g is holomorphic on C,.. Applying MaxMP, (16b),
to g on C, shows that |g(w)| < 1. Sending r 1
implies that |g(w)| < 1. At w=0 this says |f'(0)] < 1,
and at non-zero w it asserts |f(w)| < |w].

The converse. A non-zero w with |f(w)| = |w|
says |g(w)|=1. And |f’(0)|=1 is equiv to |g(0)|=1.
If either happens, then |g| attains a maximum at an
interior point of B, so MaxMP implies that g is some
constant; say, M, of abs.value 1. Thus f(z) = M-z.4
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Taylor’s thm
The “ K™ Taylor polynomial for f, centered at
Q” is

17: Tz M@

n!

n Pp—
, where ¢, ‘=

ch

The K* remainder term is defined by

flz) =

Sometimes the f, Q or z is dropped from the notation,
when it is understood.

Trox(2) + Rygr(z).

18a: Taylor-series thm. Suppose f is holomorphic on
open ball B centered at ) € C. Define coefficient

Q)

n!

Cn =

Then power series

fz) =37 ez = Q"

converges to f(z) on B, ie f|z=f. O

Prelim. WLOG Q =0. So ¢, =
Taylor-polynomial is

Tk(z) =

%, and the K"
K—1
Z Cn- 2"
n=0
Fixing a point p € B, our goal is to establish
oo
> cnp" equals  f(p).
n=0

To accomplish this, we’ll show that the K remainder
term,

B Rk = f(p)

goes to zero as K /oo. The method is to integrate
around a circle C := Sph,.(0) C B that encloses p; so

Below: Let f mean fc.

— Tk(p)

r > |p|.

For a complex w#1 and posint K, easily (exercise)

K
%3 L:L—sz O

1—w —w

Taylor’s thm
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Proof. CIF says f(p) equals 5=
ratio w = p/z isn’t 1. So (x) apphes, giving

1 . } 1
z—p 2z 1-[p/4]
by (%) } [p/Z]K + E'K_l [p/z]n
z 1—[p/z] z =
K K—-1
_ _p n_1

Multiplying by f(z), then integrating, says f(p)
equals

K, 1 f(z) f(z)
P .21rz'/[z— dz + Z 27rz Zntl dz.

But GCIF says %mféfyfi)l dz = 0 !( )7
the righthand sum is s1mply Tk (p). This establishes
that

I: Rx = pK'l./[

271

which is ¢,,. So

1) dz.

z—p]- 2K

Upper-bnding |Rx|. Recall 2z is on C, a circle of
radius T>|p\ As ]z—p| > |z| = |p| = r—|p|,
have that o=pl p‘ < | K Letting M be the maximum

of | f| on C, then,
M
74
JE=pi 4

f(z
’/[z;()]?zK dz‘

B M - 27r
[r—Ipl]-r%
Happy, (1) hands us
M -r K
ni )
r—Ip| Lr

Since ratio |p|/r <1, the RhS\0 as K /'cc. ¢

18b: Taylor-remainder coro. Suppose h is holomorphic
on C, where C is a circle centered at some point ().
Consider the Taylor decomposition

h(p) = Turoxr(P) + Rugx(p)
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at a point p € C. Then the (f)-formula for the re-
mainder term, is

Ruqx(p) = [p— Q" ‘hg(p),
1 i h(¢) d¢
2mi)c[C—p] - [¢ — QIF
Moreover, this hi () is holomorphic [since (%) satisfies
the conditions for diff’ing under the integral sign w.r.t p]. O

where

*: hi(p) =

Remark. The above shows that holomorphic fncs are
analytic [locally have power-series expansions|, and term-
by-term differentiation shows that analytic fncs are
holomorphic. Unfinished: as of 9May2017 ([l

18c: Remark. Using the above notation,

& ()
Y- ) -

n=0

h(z) =

Now suppose that some-order h-derivative at @) is not
zero. Let K now be the smallest index such that
rE)(Q) # 0. Unfinished: as of 9May2017 O

19a: Defn. For an analytic f: D°P"—C, in a general
sense each point Q € (D) is a singular point; that
is, each nbhd of @ has a point of analyticity of f [see
P.74]. A Q is a remowvable singularity if f can be
defined at @) so that now, f is analytic in a nbhd of Q).

A singularity @ is an isolated singularity if f is
analytic in some punctured-ball PBal,(Q).

An isolated singularity @ is a “pole of f” if
lim,_,q | f(2)| = oo; otherwise, @ is an essential sin-
gularity of f.

The “residue of f at an isolated singularity Q" is
the unique complex number R such that function

z = f(Z)— 275@

has an antiderivative in some PBal,(Q) with r > 0.

At an isolated singularity ), suppose f is analytic
on PBal,(Q), where r > 0. The Laurent expansion of
f has form

1) = [ i) + [Sowte-ar]

k=1

where RoC(&) > r and RoC(b) = co. Consequently
Res(f, Q) = bl- O

Taylor’s thm

Q1" - hi(z).

Page 12 of 29

19b: Residue Thm. For a CC C, suppose [ is analytic

on C except at finitely many points QQ1,...,Qr, each
in C. Then
L
/Cf(z) dz = 2mi- Y Res(f,Q)]. 0
/=1

19c: Residue computation. Let f(z) = sin(z) - e?/2".
What is R := Res(f,0)?

Writing ¢(z) = sin(z)-e* as PS > 72 janz", our
Res(f,0) is ag. Recall

Sin(z):%—%-l-%—... and
oo k
D D -
1 1 1.1 1 17 _ 1 1 11 _ -1
Soas = [1'135) — [576] + [0°'1] = 6 70— 5] = 0
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20: Standing notation. For r>0, let L, be the line seg-
ment from -r to +r, and let A, be the semicircular arc
from +r through #r to —-r. Glued together they make
SCC, D,., which looks like a O, a horizontal capital D.

Let U := Sph,(0) be the unit circle. O

CoV of Definite-integral to contour-integral, 1

CoV of Definite-integral to contour-integral, 1

To compute
27 1 48
21a: W = —
& o 4+cos(d)

let’s use CoV z :=e%. So % = 3¢ = 42, Thus

d 1 241
Zj and cos(f) = 5[2—1— 1= z 21_ .

df =

So,
1 1 1
U4+ 5522 tJud+ 55z

The integrand’s denominator is 4z + £ 'H = @,

where q(z) := 22 + 8z + 1. Hence , where

1
J = ——dz.
u q(2)

— 411 =242 -
al[z — B], where

-4 —+/15.

Easily, « is enclosed by U, whereas § is outside of U.
Letting h(z) .= 1/[z — f], our J equals

h(z) by CIF 1
d 2wi-h = .
/u z—a " mih(a) V15
W= 2 mw 2w

i /15 15

Poles. Note Discr(q) = 82
So g factors as g(z) = [z —

= 4++V15 and [ =

Hence

21a’:

Extending. For M > 1, define

27 1
21b: Wy = ——d6.
M 0 M + cos(h)

e says that where

dz for quadratic ¢(z) = 22 +2Mz + 1.

Our CoV z =
=l

1] = 22.15.
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As before, Discr(q) = 22[M?
[z — a][z — B] where

OCIZ*M—F\/MQ—l and ﬁ::*

Since M>1, our « is enclosed by U, whereas (3 is

— 1]. Hence g(z) equals

M?—1.

outside. ~ With H(z) :=1/[z — ], then, J equals
I .
/ () dz by CIF - T . Thus
uz—aw M? -1
21b': Wy =
General method. The CoV 2z = e* transforms

[0, 27r] into U, the unit-circle. Moreover, for :

Q= &
1z
2 2%k
+1 2"+ 1
0) = Ly 1= 2 k0) —
cos(6) 2[z+z] , cos(kO) ook
2 2%k
i 1_ % -1 . _z —1
sin(0) = 5:[z — ;] = 555 sin(kf) = T

Thus a fozﬂ integral of a rational function of cos(k0)
and sin(¢6) is transformed, by the CoV, into a [, inte-
gral of a rational fnc of z. Factoring the denominator
gives the poles of the integrand, so we can apply CIF,
equivalently, the Residue thm.

As an example, consider W := fo 5 +Sm(0 df. Our
CoV (21c) says that

1 dz note 2
W = /U2+ 221 E —_— Aq(z) dZ7
21z

where ¢(z) := 22 +4iz — 1. Thus
Discr(q) = [44)> —4-1-[-1] = 2%[-3]. So,

Roots(q) = 1[-4é £ 24v3] = [2 £ V3]i.
Consequently ¢(z) = [z — a]-[z — 3], where
o = [2+V3]i and B = [2 — V3]i.

Easily, 3 is outside U and e is inside, since [-1 < a] &
[1 < /3], which holds. Hence W equals

/2/[2_'3] dz &£ 27ri-72 = 2w _2 .
U 2— a—p3 243
2 1 27
21d: L —— d¢ = —.
% /0 2 + sin(0) V3
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Higher-order poles. The preceding examples had
an order-1 pole, so let’s go up. For natnum N, define

2m
2le: JN ::/ cos(9)N db.
0

Of course, the symmetry of cos() forces Joga to be
zero, but let’s apply The Method, and see what tran-
spires. v

Our CoV says Jy equals

/ {22+1JN dz 1 / [z2+1]NdZ

ul 2z iz 12N Jy 2N+ '
With f(2) := [22 4+ 1], let C denote the coefficient
of zV in f(z). Then f(N)(0) = [N!-C]. Our GCIF
says [, [Zj;,rﬂN dz equals % Cf(0) 2 9. C.
Thus

27

When N odd then C=0, giving Joqq=0, as expected.

When N = 2H is even: The coefficient of 227 in
. . . . o2H
polynomial f(z) = [2? + 1]*# is binomial-coeff (%;).
So for H =0,1,2,...,
)
H

27 2H
Jog = 22H<H> = 271'-22—H.

This multiplier, (2}? )/2% | we recognize as: The Prob-
ability, in 2H flips of a fair coin, of getting ezxactly
H heads. [That probability indeed decreases monotonically
to zero as H/‘oo.]

We get the curiosity that the average value of the

integral, % OZ”COS(H)N df, is a probability. Hmm. ..

21¢€':

“4For N=2H even, we must have Jx\,0 monotonically as
N /oo, since cos(G)N goes to monotonically to zero, except
when 0 is a w-multiple.

Definite-integral from limit of contour-int., 2
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Definite-integral from limit of contour-int., 2

For posint N, we seek

© 1
22a: Vi = / —— dx
N —00 LBN +1
when N is even. [When N odd, then the integrand has a
pole at x =-1.] Moreover, does this limit exist in R?:

22b: A = lim Vy.

N—o0
N even

The Trick. Note that

1 1 r
‘/TzN—Fldz‘ S /7.TN—1|dZ| TN

which goes to zero as r oo, since N > 1. Thus

def . 1 . 1
Vy = 1 dz = 1 dz.
N L AN 1Y T e N1

The only zeros of 2V + 1 lie on the unit circle, and
so all » > 1 yield the same wvalue for the righthand
integral. Thus its value is Vi, i.e

1
V=[] ——4d
N /D,zN—i-l .

Henceforth, D denotes one of these contours; say,
Dy for specificity.

for each r>1.

The poles. Letw = wy = cis(w/N). The N many
N*%_roots of -1 are w, w3, w®, ..., w?N~1. Those that
lie in the upper half-plane, i.e, those enclosed by D,
are in list

. 35 N-3  N-1
Tt L =Ly = {ww,w,. .., w 7w

1
2N 41

recalling that NNV is even. These are the poles of
that are enclosed by D.
Fix a pole p in this list and define

2
2N 417

fo(z) =

The contour integral on a contour C that goes around
only pole p is
fp(z) dZ

cCZ—PpP

)

which, by CIF, equals 273 fp(p).
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Computing fp(p). We could factor zV + 1, but
simpler is to use I'Hopital’s rule. Our fp(2) has a
removable discty at z=p, so

_ iy 2P 1H 1 - 1
fo(p) = A N1 A NN T NpN-1°
As pV =-1, our ﬁ = -p, thus fp(p) =-p/N.

We’ve now shown that

271 27
ZP = m'zp-
pel pel

Adding over the poles.

Vv =

Writing our even N as N=2H [H for Half] gives the
delightfully cheerful formula

I: VN = %'Z(Lw)-
Interlude. Using Actual Numbers. ..
™
Vo = T3 1 = Tr.
Vi = 21[* + ) = 2.2 = n/Va
Vs = %[—f +i+ 8] = Z 9 = %‘rr.

Computing > (Ly). The poles of () can be
paired, allowing us to cancel out the cosines and ex-
press this sum ITOf sines. [Discussed in class. In partic-
[7sin] = 2]

Alternatively, we can sum a finite geometric series.
Note that 1-£ = {1,w? w*, ..., w4 wN=2}. Thus

ular, A =

H-1 2]H

Y8 = Y W =

Jj=0

Recall that w2 = N

2 w
L) = w-——"0 = 2. .
Z() wl_w2 1_w2

12 _
The reciprocal of = is IT“’ = l -1 =W —w;
this last, because w is on the unit- Clrcle And w0—w

equals 2¢-Im(w), i.e, 2-Im(w)/¢. We get the nifty
Y(Ln) = i/Im(wy) = 4/sin(F), thus

B /N
/)

=-1, so

22a’:

Definite-integral from limit of contour-int., 2
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5 As 0N\0, ratio

creases to 1. ThlS proves that Vo >V, > Vg >
and that Vi \2.

Easily, for § < (0) strictly de-

Redoing, Vg = 2-71"7/3 = %‘n, as before. To com-
pute Vg, the half-angle (...that sin(6)*> = 3[1 — cos(26)])
formula tells us that sin(§) = ~ 2;‘5. Thus

™

Vo= ———.
2-4/2 — /2

This extended example hints at the power of the
residue-calculus. In particular, it handles all. ..

.. Integrals [ / Ex)) dx with f and q poly-

norma]s with Deg(q) — Deg(f) >

having no real roots.

2, and q

Example: Squared outside.

Lo RS

As usual, the integral of f(z) = B

goes to zero as 1,00, so Z = [y f, where D := Da.
As ¢ is the only upper half-plane singularity of f, we
have

/ f = / e 3]2 dz, where g(z) =
Thus Res(f,1) = gll(!i) =2z +43|,; = % = i

Hence,
s 1 1 s
e / ——dx = 27t - — = —.

¢ Jese [:1;2—1—1}2(1 ™4 2

Contemplate

22¢: Z =

QH]Q over arc A,

[z + 4] 2

Generalizing. For K a natnum, integral

e2 1
Zoo [22 + 1]K+1 dz

[z + 4] “[K+1]

22d: Zxg =

equals fD[ Z]Izﬂ dz, where g¢g(z):=

Now Res(f,1) = % Doing the arithmetic yields
00 1 (2[\')
. - _ K
22d/. /x W dx = - 22\1\, 0

This looks a lot like (21€’). Again, Hmm. ..
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Jordan’s Lemma

We need an estimate to show that certain integrals
are bounded on our A, arcs. But first. ..
23a: Proposition. Fix T > 0. Then

N

/Oﬂ lexp(2T-cis(0))| dg % .

Proof. Since sin() is convex-down on [0, 7], its graph
lies above the line-segment connecting (0, 0) to (%, 1).
Thus

f: VOe[0,T]: sin(6) > :/2 o —sin(f) < %e.
For S,B > 0, note fOB e¥9df = £[1 — 55]. Hence

12 JBeSa9 < 1/S.

Estimate. Since 7T -cis(f) = iTcos(f) — T'sin(6)

and T is real, we have that
lexp(¢T-cis(8))| = exp(-T'sin(h)).

On interval [0, 7], fnc sin() is symmetric about 7.
Thus

L /2
/ lexp(i T-cis(9))|df = 2/ exp(-T'sin(6)) d0
0 0
/2 _
< 2/ exp(Q—Te) a6,
0 ™

courtesy (1) and that 7>0, as well as that exp() is
order-preserving on R.

Applying () with B := /2 and S =
that

2L now yields

4 . 2T note
]exp(z T-cis(0 0 < 2/ — ¢
0

23b: Jordan Lemma. Fix P > 0 and a fnc g() which
is continuous on the upper half-plane in C. For each
r>0, let M, be the maximum of |g| on A,. Then every
radius r>0 satisfies

¥: ‘/ eiPZ-g(z)dzléz-Mr. O
Ar P

Jordan’s Lemma
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Pf. Note LhS(¥) < [, [e*F%] - M, |dz|. So ISTShow

that )
/ 671142 < 5
A

CoV z = ret? 22 1 ¢is(0) has 4 & = qre?. Thus,

/ et 2| |dz| = / lexp(i Pr-cis(0))] - |ire®| do
Ar 0

=r / lexp(¢Pr-cis(6))|df < r- iy
0 P

r

This last inequality is courtesy Proposition 23a applied

with T := P-r. ¢
Appl. of Jordan Lemma. Consider

00 Lo
23c: Y = / e sin@) 4,

00 332 +1

The difference in the degrees of the denominator poly,
22 + 1, and numer poly, z, is only 1. The positive and
negative parts of the integrand each have infinite in-
tegral, hence [0 %] dx = oo; so the oscillations
of sin() are crucial for convergence of (23c).

Fixing an r > 1, we seek to compute

" x - sin(x)
Vo = ———dz.
[r z2 +1 o

Note [7 = Cfi(lx ) dz is zero, since cos() is an even fnc.

Thus Y, equals

/T z - [sin(z) — icos(z)] ] i/T T - e |
T = - T
. 241 x4+ 1
Thus we’ll have _
z . e’LZ
*2 Y = -7 lim dz
r /o0 JD, 22+1

if we can show that the contribution on arc A, goes
to zero.

Applying Jordan's Lemma (23b) with g(z) =
and P =1, gives

_z
z2+1

r
< C—_—.
‘/A 22—0—1 Z S r2 —1

This goes to zero as r,"0c0. So Y equals —4 [, 52—:? dz
where D is, say, Do, since Dy encloses all the upper
half-plane singularities of the integrand.
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Applying CIF to f(z) = z - €**/[z + i] gives

H®) Gy — omi- f(5) = omi- 25 = 0T
Dz—1 (2 + 1] e
So (x) says
23c': /qum(l)dT S
Jso X241 e

Now that is pretty dang Cool!

Keyhole contours, 3

Some definite integrals can be neatly computed using
a keyhole contour. Here is an example:
Let K be the contour along R from 1/r to r, then

CCW circle Sph,.(0), then along R from r to 1/r,
and finally CW circle Sph, ;,.(0).

Call the 1/r to r line-segment L,. Call the r to 1/r
line-segment [T; we need a different name because we
will be integrating fncs with a branch-point at 0, and
we have gone around that branch-point.

Computing I'. Let’s use our K to compute

< VB,

24: I =

0o x2+ 1
With f(z) == ZQCI, observe that
_f = =[]/ f.
L, L,

The negative-sign is because we traverse L, in the
opposite direction from L,. The [-1] is what a square-
root is multiplied-by, when we circle CCW once
around the branch-point. Because of the form of our
f, its value is multiplied by [-1] when circumnavigat-
ing the branch-point.

Easily the f-integral along the circles of radius
and 1/r go to zero as r,oco. So

lim 2/ f =

lim Tf: hm{ f—i—/rf} :T/OO g

r /o0 JK r /100

The singularities of f are at +¢. They are enclosed
by K := Ky, whence

r=[r=

27i-[Res(f, ) + Res(f,-4)].

Keyhole contours, 3
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Let [J mean a finite-value that we don’t need to com-
pute, because it will be multiplied by zero.

We could just factor 22 4+ 1 and use CIF, but let’s
compute the residues at these order-1 poles. So
Res(f, ) equals

[z —ilvz

1 . —
z1—>Hi [Z z]f(Z) z1—>Hi 2241

LH . vz + [z -0 _ o

z—1 2z 21

where « is the sqroot of ¢ for this branch of /- .

Similarly, Res(f,-%) equals
lim M L o @ — ﬁ.’
i 2241 z— -1 2z 21

where (3 is the sqroot of ¢ for this branch of /- fnc.

Computing the sqroots For this branch of /-,

our o = % and g = Ji,whencea 8= % So
from (%),

. a—pf s
24': = i - ZR(s = : — = —.

Cube-root. Our K also applies to

0 p1/3
25: = —d
5 /0 o T
Let g(z) == ;214/_31' As before,
/ g = [1-M] -/g,
L+L L

where M is what a cube-root is multiplied-by, when
we circle CCW once around the branch-point. Be-
cause the form of our g, its value is multiplied by M.
Here, M = 1[iv/3 — 1], the cube-root of 1 that cir-
cumnavigation brings us to. Looking ahead,

2 [VB -]

As before, the g-integral on the circles dies off, so

u—My/g Lo

T 1-M = [3-1iV3] =

note

I 1—-M-Q =
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Computing residues. Our Res(g, ¢) equals

: : =] 23
lim [z — = lim &%
imle—ilele) = Im
L’ 1 21/3 =[] o
= lim = —
z—1 2z 21

where a is the cube-root of ¢ for this branch of /- .
Similarly, Res(g,-t) equals lim,_,; [z + ¢]g(z), i.e
[z + 1] - 23 g 1.21/3 + O B

i AT B g, AR
z——1 22 +1 Zz——1 2z -21

where 3 is the cube-root of -4 for this branch of /- .
Here, a = %[\/?7 + ¢] and B = 4, so a — B equals
+[V/3 — i]. Consequently,

21

/Kg = 2mi[> Res| = 27ri-a_6 = g[\/g— i].

Thus

S vE—i] Z ® 1 - M0

e, % = @Q So

257 0= ——":

The power of contour-integration, At Your Service!

Four failures

Part of understanding a technique is when it doesn’t
apply, or when it needs to be modified.

®© 5+ x
Y = dx .
! /0 2 +1 .

Consider

In going around the branch-point, we multiply /=
by -1, but that doesn’t multiply the integrand by -1,
as 5 is unchanged. In this instance, we could write Y;

dx} + { 5 T dx} and compute

5
241 241

each integral separately.

as a sum [fooo

Now consider % sin(5 + I )
sin 7
Y, = —————2dx.
2 /0 2 +1 .

Four failures
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Going around the branch point, we multiply +/z
by -1, but not 5, and so what happens to sin(5 + /z)
is complicated. It is unclear how to proceed. [Does the

formula for the sine of a sum, help?]

Our third example is
Y = /°° sin(y/7) d
0

$2+1 xX.

In going around the branch point, we multiply /2
by -1. This happens to multiply sin(y/x) by -1, since
sin() is an odd fnc, but it is important to understand
why the technique still works in this instance.

Our fourth example is the innocuous

cos(vz)

Y, = /Oh, where h(z) = 211

Here, the method fails in a novel way.
Going around the branch point multiplies \/z by -1.
Since cos() is even, this leaves cos(y/z) unchanged.

Thus
[1—1]/Lh -

frefon -
D L+L

Unsurprisingly, [ will be zero, yielding the useless
eqn 0 = 0-Yy, giving no information about Yj.

0-Yy.
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Applications of Rouché’s thm

Rouché’s thm can be viewed as a special case of The
Argument Principle.

26: Rouché’s Thm.  Consider SCC C. Suppose both
o) and B() are analytic on C, and |a| > |3] on C.
Then

a and a+ (3 have the same number of zeros
[counted with multiplicity] in C.

Note a and a— 3 also have the same number of zeros,
in C, since |a| > |-B| on C. O

For real number K, a z-expression E=a(z) and
an arbitrary set C, let an expression such as
“Elc > K" or “lajc > K” or “|a()|. > K” mean
that Vz € C: |a(z)| > K.

27: Fx. R1.

Soln R1.
28: Fx. R1.
Soln R1.

29: Ez. R4. Fix real M >0 and T'>2. Prove that
30: M2 — 24T = [242]-€7

has precisely 2 solns in H := {z | Re(z) > 0}. O

Soln R4. We will use a(z) = Mz3—2+T
and B(z) == [z + 2] - €*. When Re(z) > 0, note
18(2)] < |z + 2|, since |e*| < €Y = 1.

For z = iy on the imaginary axis, note a(iy) equals
-iy°M — iy + T. Since y>M and y have the same
sign,

a(iy)| > iy +T| > |iy+2],

since T'>2 is real, hence orthogonal to #y. Thus
t:  On the imaginary axis, |a| > |8].

[This argument needed the strict T>2.

lee(0)] = |B(0)].]

For if T=2, then

Applications of Rouché’s thm
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The contour. For r>0, let A, be the radius-r
semicircle from -2r through r to 2r.

For r > ﬁ, note Mr® —r —2 > r?2 —r —2. For
z € A, then, |a(z)] > 1% —r —2.

If also 7 > 4, then r? > 4r. Hence
2 —2>3r—2>2r >r+2 > |8(2),

for z € A,. Consequently,

f: For r>Max(4, §;), we have || > |B] on A,.

For such r, then, our (1,1) guarantee that |a| > |3|
on contour D,, where D, is arc A, glued to the line-
segment from —¢r to 4r.  Sending r oo, then,

In half-plane H, expression [z + 2] - €* has the
same number of zeros as polynomial a(z).

¢

Counting roots of a(). As x\,00, remark that
a(r) = -00. Yet a(0) =T > 0. So IVT (Intermediate
Value Thm) implies a() has a negative real-root.

Unfinished: as of 9May2017
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Notation Appendix

Use € for “is an element of’. E.g, letting P be the
set of primes, then, 5 € P yet 6 ¢ P. Changing the
emphasis, P 5 5 (“P owns 5”) yet P Z 6.

For subsets A and B of the same space, €2, the
inclusion relation A C B means:

Yw € A, necessarily B 5 w.

And this can be written B D A. Use A g B for proper
inclusion, i.e, A C B yet A # B.

The difference set BN Ais {w € B|w ¢ A}. Em-
ploy A¢ for the complement 2~ A. Use A A B for
symmetric difference [A~ B]U[B ~\ A]. Further-
more

A®B ’ Sets A & B haye at least one point in
common; they intersect.
ANB : The sets have no common point; dis-

joint.

The symbol “A®B” both asserts intersection and
represents the set AN B. For a collection € = {E;};
of sets in Q, let the disjoint union ||; E;j or | |(C)
represent the union U; E; and also assert that the
sets are pairwise disjoint.

For fncs on a set €2, each subset B C €2 has its cor-
responding “indicator function of B”, written 15.
It is the fnc 9—{0,1} which sends points in B to 1
and points in 2\B to 0. [So 14 + 1ga) is constant-l.]
E'gv 1Primes(5) =1, and 1Primes(9) = 0.

General Appendix

The discriminant of quadratic [i.e, A#0] polyno-
mial ¢(z) := A2%2+ Bz+ C is

31.1: Discr(q) = B? — 4AC.

The zeros [“roots”] of ¢ are

i{*B + /Discr(q) } :

Hence when A,B,C are real, then the zeros of q form
a complex-conjugate pair. And ¢ has a repeated root
IFF Discr(q) is zero.

A monic R-irreducible quadratic has form

31.2:  Roots(q) =

31.3: q(z) = 22— Sz+P = [z 2] [z Z],

General Appendix
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where Z € C\R. Note S =7+ Z =2Re(Z) is the
Sum of the roots. And P = Z-Z = |Z|? is the Prod-
uct of the roots. The discriminant of g, Discr(g),
equals

314:  S2—4P L7 7 = —4[Im(2))>.
Completing-the-square yields

31.5:  gq(x) = [x — %]2 + F2, where F := [Im(Z)|,

which is easily checked. [Exercise]

Abbreviations. Use posreal for “positive
real number”. A sequence X abbreviates
(z1,29,23,...). Use Taily(X) for the subsequence
(acN, xN+1,{L‘N+2,...) Of)_f. OJ

32a: Addition-Cts thm. The addition opera-
tion CxC—C is continuous. Restated: Suppose
X,y C C with lim(X) = a and lim(y) = 5. With
Pn = Tn + Yn, then, im(p) = a + S. O

Proof. Fix a posreal €. Take N large enough that
Taily(X) C Bals(a) and Taily(¥) C Bals(B).

Each index k has py — [ + 5] = [z — o] + [yx — 5]
For each k£ > N, then,

[~ o+ B)| < lzx—of + |k =B < 5+5 = o

Remark. The same thm and proof hold for addition
on a normed vectorspace; simply replace |-| by the
norm ||||. O

Use WELOG for “without essential
loss of generality”, and posint for “positive integer”.

A sequence X abbreviates (x1,z9,z3,...). Use
Diam(X) for the diameter of the set {z,}5° ;. O

Abbreviations.

32b: Mult-Cts thm. The multiplication operation
CxC—C is continuous. Restated: Suppose X,y C C
with lim(X) = o and lim(y) = 5. With py, == zp, - Yn,
then, lim(p) = « - S. O
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Proof WELOG |B| < 7. Since X converges, necessarily
the Diam(X) is finite; WELOG

T V posints n:  |x,| < 50.

For each posint n, adding and subtracting a term

gives
InYn — aff = InYn — Tnf + zTuf —af

= Tplyn — B] + [zn —alB.
Taking absolute-values, then upper-bounding, yields
t Jeatn =l < lanllyn — ] + |on —al 15
< 50 fyn =Bl + |lzn—af -7,
by (f) and the first sentence.
Fix a posreal €. Since lim(y) = § and lim(X) = a,

we can take K large enough that for each n in
[K ..00):

2 2
55/0 and |z, —al < gé
Plugging these estimates in to () gives that

|yn_ﬁ| <

note

[onyn — 0B < 50'55/*02"‘#'7 £,

for each n > K.
As this holds for every e positive, lim(X - ¥) indeed
equals af. ¢

33: Non-neg Lemma. On interval J := [a, b] suppose
continuous function h satisfies h > 0. If ff h(t)dt is
zero, then h() is identically zero.

On a closed contour C C C, suppose a continuous
9:C—R is non-negative; g() > 0. If the arclength

integral
L) 1

is zero, then g is identically-zero on C. O

Pf for h. FTSOC, suppose dp € J with 3¢ := h(p)
positive. Cty of h at p says there exists an interval
I > p of positive length, so that every x € I satisfies

|h(z) — h(p)| < e;

hence h(z) > 3¢ —e = 2. But h() is non-negative
on J, so

/h > /h > /25 = 2¢-Len(!).
J I I

This latter is positive, yielding a contradiction. ¢

Page 21 of 29

Let z:[0,1]—C be a [cts, piecewise smooth]
parametrization of C. Then h(t) := g(z(t)) is cts and
non-negative. By above, h =0 whence g = 0.
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Sufficient condition for differentiability

Consider an open subset U < RY and a map
h:U—R. Use abbreviation X for the N-tuple
% = (71,72,...,7y), a point in RY. Let h; mean
c?Thj’ that is, the partial-derivative of h() w.r.t its

th

j™ argument.  Finally, have [|-|| denote the usual

%] = /550 |5l -

34: Thm. Fix a point ¢ € U. Suppose all partial-
derivs hy,...,hy are defined in a nbhd of ¢, and are
each continuous at ¢. Then h is differentiable at €. ¢

Euclidean norm on R%:

Proof.  Without loss of generality, ¢ = 0. [Rename
hnew(¥X) == h(X — €), and translate U]
WLOG, h(0) = 0. [Rename Ay () = h(Z) — h(0).]
WLOG, V7, partial-deriv h;(0) is zero. Why? Re-
name N

hNew()z) — h(i) - Z[h](ﬁ) : ‘Tj} :

j=1

Now that all the partials are zero at the origin, dif-
ferentiability at the origin is can be stated thusly:

For all €>0, there exists >0 so that each

p € U with 0 < ||p|| <9, satisfies Vﬁ%ﬁ‘f‘ <e.
Of course, the “<e&” can be replaced by any zero-
going fnc of €, so ISTProduce a d such that:
For all e>0, 36>0 so that each p € U with

GOAL: “
0<||p||<d, has |h(p)| < e-Kn-||P||,

for some positive constant K ; that is, does not de-
pend on &, nor on p.

Continuity at 0. Cty of the partials at 0 admits
a >0 small enough that the open ball B := Bal;(0)
has this property:

Foreachj =1,...,N and VX € B, we have
t:  that

| (%)| 222 |hy(%) — hy(0)] < e

Using MVT. Fix an £>0, and consider a point pEB.

We'll apply MVT at each index j for which p; # 0; so

for notational simplicity, assume every j has p; # 0.
For k=0,1,..., N define

Sufficient condition for differentiability
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N—k
¥ = (p1,...,pk 0,0,...,0).

And for j =1,..., N, let S; denote the line-segment
from =1 to y.

As ||| > Hy’mH, each ¥¢) € B. Hence, since ball
B is convex, each line-segment lies in B.

Apply the MVT to h| S;3 that is, to h restricted
to Sj. Our MVT guarantees a point, call it %7, in Sy

t. . .
S Ih(F9)) — h(FI—D)]

hi(XD] = N
‘ ]( )’ Hy<]> — y(]‘UH

Note ||§¢) — 9= | is simply |p;|. And |h;(®7)| <e,
courtesy (), since X/ € S; C B. Consequently,

h(FY) = hFI)] < e Ipsl-
Using the Triangle Ineq., summing over j = 1,..., N

yields that |h(§’<N>) - h(§<0>)‘ is upper bounded by
e- N, p;|- By defn, 7 = B and §9 =0, so

g @) < =X il

where we have used that h(¥'?) is zero.

Lastly, each [p;| = +/|p;|?> < ||P||. Summing over j
gives Z;yzl Ipj| < N -||p|l. This and (}) together,
yield (Goar) with Ky = N. ¢

34a: Remark. The purists among you can use Jensen's
Inequality [or Hélder's Inequality] to conclude the stronger
Zé‘vzl ’pj’ < VN - HfiH [For the above proof, however,

this improvement is irrelevant.] L]
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Cauchy-Goursat for a rectangle

Here, a rectangle has form
R = {z+iy|zecfa.b]andy € [c.d]}

where a < b and ¢ < d. Let R denote the boundary
of R, both as a set and as a SCC, and let

IR = /aRf(z)dz.

Note that [z 1dz and [yg zdz are each zero, since
fncs [z+—1] and [2+2] each have an antiderivative. So
for arbitrary constants J,K,L, we have that

sz [ f(z)dz :/aR[[f(z) —J] - [ - KL] d=.

Splitting. Rectangle R splits into 4 congruent sub-
rectangles, A,B,C,D each with half the width and
height of R. Note

Ir = Ia +Ip + Ic + Ip,
since each internal edge is traversed twice, once in
each direction, cancelling. Hence

Zr| < [Zal + |Z8] + [Zo| + |Zp].

So at least one of the subrectangles has its abs-value
at least as large as i\IRL Pick one according to some
definite rule (e.g, first one in CCW order) and call it R.

Pf of C-G for a rectangle. ~ Consider a rectangle Ry
and a fnc f holomorphic on Ry. Use the preceding
paragraph to define a sequence of rectangles

e RyoODRi DRy D ...

by R,41 = R),. Since |Ig,| < }|ZRr,,,|, induction
gives

1 TRl < v - TR,

Letting D,, and P,, denote the diameter and perimeter
of R,,, note

*: D, = 3Dy and P, = 5--F.

2”1

The intersection point. The rectangles are closed
and bounded, and nested, so they converge to a point;
call it q. [Point q could be on 0Ry, which is ﬁne.]

Cauchy-Goursat for a rectangle
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For future reference: Given an arbitrary rectan-
gle R, we can replace the constants J,K,L in (35a)

by f(q), q and f’(q), respectively, to get
b In = [ [f() - f(@) — [-df(@)] dz.
OR

Using differentiability. Fix an €>0. Since f is
differentiable at q, there exists >0 so that every z
with 0 < |z —q| < J satisfies

f(z) — fla

(LI )| < e
Z—q

Multiply by z—q, then take abs.values, to get

35c:  |£(2) - fl@) — le—dlf'(a)] < e |e—al,

and this latter holds also for z = q, hence holds for
all z in Bals(q).

Picking index K. The rectangles of (1) all own q,
and their diameters shrink to zero, so we can choose
an K large enough that Rx C Bals(q).

Now (35b) and the Triangle-Ineq-for-Integrals gives
that

Trel < [ |£)- £(@) = le=alf'(@)] -] d2l.
OR g
Courtesy (35c¢), then,
Tl < o |e=al-|dzl.
OR i
Each |z—q] < Dg, so
’IRK| <5DK/ ]dz|:5-DK-PK.
OR g

Multiplying by 4%, our () and (}) produce
:H:: ’IR()’ < 8-D0-P0.

Happily, the RhS goes to zero as e\ 0. ¢
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Radius of Convergence

Series notations. Customs about how “series” is used
in the context of “convergence of a series” are a bit
strange. A “series €” is a sequence € = (ex)r—o,
but”® where the word “series” hints to the reader
our interest in its sum > (€). This sum is the limit
—when it exists— of the corresponding ‘“partial-sum
sequence” S, where

36: SN =
k€[0..N)

Use m to indicate this partial-sum relation

between sequences. Phrase “series € is convergent”
means that lim(S) exists and is finite. So Y (€) =
lim(S).

To clarify, the n'! partial sum means the sum of
the first n terms, regardless of the initial index. For
example, suppose b = (be)25, and € = @(B) Then
e3 = bs+bg+b7, and ey = 0.

Example: Let b = (k?);, and & := P£(b). Then
an = g:[2n3 + 3n? +n). O

37: Root-test lemma. Given a series € C C, define

note

len| €

n

x: A = limsup [0, +o0] .

If A < 1 then € is an absolutely-convergent series.
If A > 1 then € is “magnificently divergent” Not
only |e,| # 0, but indeed limsup |e, | = +oo. O

n—0o0

Proof. Let a, = |ey|,

(CASE: When A < 1] ISTShow that a is a con-

vergent series. Pick p with A < p < 1. Take K
large enough that sup,>x {/an, < p. Hence

Yap < Y, pt<oo. And

n>K n>K

> an < oo.
nell.. K]

(CasE: When A > 1.) Pick p with 1 < p < A.
By (x), the set J := {n| t/a, > p} is infinite. And
each n € J has a, > p". ¢

“5The index will usually start at zero, but it doesn’t have to.
The sequence € might be (ex),—o,, or (€x)re 5.
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A function f:R—R is ewventually positive if
[ElK stV > K: f(z) > 0]. Thus a degree-k poly,

flx) = Cra® 4 -+ Crz + Cy,

is eventually positive IFF f has positive leading-
coeft, Cy > 0.

Power-series notation. A sequence ¢ C C and point
Q@ € C determine a power series

38a: PSeg(z) = ZZOZO e lz=QI". O
From the notation we sometimes drop the the cen-
ter of expansion, just writing PSz. This is especially
true when the center of expansion is 0€C.
Use “PS” to abbreviate the phrase “power series”.
Use M to abbrev Maclaurin Series; a PS centered
at @=0. E.g MdSg(z) = > 02 [cn - 2"].

Radius of Convergence. The set of z € C for
which RhS(38a) converges is called the “set-of-con-
vergence”. We write it SoC(c, Q)

It will turn out that the SoC comprises an open
ball, possibly of radius 0 or oo, together with some
of the points on the boundary of this ball. This open
ball of convergence is written BoC(C, Q). Its radius
is the radius of convergence of RhS(38a), and is
written RoC(c).”% So R := RoC(c) is always a value

in [0, +o0], and BoC(c, Q) = Balg(Q). O
38b: RoC Lemma (Cauchy, 1821. Hadamard, 1888.) Con-
template power series PSg ¢, as in (38a). Let
t
Q = limsup {/|cy] e’ [0, +00].
n—oo
Then RoC(€) = 1/Q where, here, we interpret & as+oo
and é as 0. O

Proof sketch. Set a,, = |c,,|. ISTConsider convergence
at a non-negative x€R. Applying the Root-test,
limsup {/|c,z™| = limsup [z - a, ]

n—o0 n—o0

= z-limsup ¥Ya, = x-Q = A.

n—o0

So A is less/greater than 1, as x is less/greater
than &. ¢

“6The argument to RoC is a sequence. So we can write
the RoC of PS f(z) = 3°2° ;n’z™ as RoC(n — n?), but not
as RoC(n?). nor as RoC(f).
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39: Three examples. [ASIDE: For fncs on a set €2,
each subset B C (2 has its corresponding “indicator
function of B”, written 15. It is the fnc 2—{0,1}
which sends points in B to 1 and points in 2~\.B to 0.
[So 14 + 1g(a is constant-1.] E.g, 1pmes(5) = 1, and
1Primes(9> = 0. ]

Let’s apply the above (38b). Define
P := Primes; D := Odds; S := {1 +n? | neN}.
Consider this power series:

39a: 23n~lp(n) ca" = 9% +272° 4+ 2432° + ...
n=0

Its RoC is 1/3, since there are coly many primes.
A funkier PS, centered at 8, is

39b: 3 [3EAp(k) + 4F (k)] - [ - 8)F.

Since {/3" +4" % 4, and |S| = oo, the RoC is 7.

Even more interesting is this PS:
o
39c: ano [5"1p(n)-1g(n)] - z™.

As of March2017, its RoC is unknown. If there are
ooly many primes”” of form 14 n? (conjectured, but
unproven) then RoC = %; otherwise RoC = oo, and
the PS is a polynomial. O

40: Lemma. For each K € R: lim, s VK =

Moreoever, for each rational function h() = 2—8

which is eventually positive, lim {/h(n) = 1.
n /oo

Proof. Use L’Hopital’s rule. Etc. O

41: Same-RoC lemma. Consider a sequence ¢ =
(co,c1,...) € C, and let R := RoC(€). For each
natnum K, and for each rational function g # Zip,
these coefficient sequences

ol (0, .K.,O,CK,CK+1,CK+2,...)
it (CK,CK41,CK42y---)
iz (g(n)-cn)Sy

give rise to power-series with RoC = R. O

“TFor the curious, see Wikipedia on Landau’s problems.
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Proof sketch. Parts (i) and (ii) follow from (38b).
Part (iii) follows from (40) and (38b). ¢

42: Diff/Integrate a PS.  We differentiate and inte-
grate, term-by-term, the G := PSg o power-series:

F(x) = Zjil bj'fL‘j , where b; = % SCjo1.
o0

42a: G(z) = Zk:o en-a® .
H(z) = Z:io de'CEZ, where dy == [(+1]-cot1.

Lemma (41) tells us that the three PSes have the
same RoC.

Observe that PSj is the term-by-term derivative
of PSg. And PS;; is the term-by-term integral of PSg.
Does the same relation hold between the functions
that these PSes determine? O

42b: Term-by-term PS Theorem. Given a sequence
¢ C R, define sequences/fncs b,d, F,G, H by (42a)
and let R := RoC(C). Then

ta RoC(b) = R = RoC(d).

With B := BoC(c), moreover,

t: Vze B: F(2) :/ .

0
And G is in C*°(B—R), with G’ = H. O
42c: Coro. Suppose PS G(z) == Y52 ¢j-[x — Q) has
positive RoC. Then this PS is the Taylor series of G,
centered at Q. O
Pfof (42b).  We'll establish that G'=H; the inte-

gral result () follows analogously. ISTo fix a pos-
real p < R, let U = Bal,(0), and prove G'=H
when restricted to U. We will apply the DUC Thm
(Derivative uniform-convergence) from notes-AdvCalc.pdf
to these fncs (deﬁned only on U)

— d
W@ =Yg T
By definition of coeff-sequence d from (42a),

! _ k
falz) = Zk;e[O..n)dkw'
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In order to show that seq (f},) - is sup-norm Cauchy,
pick a number V with p <V < R.
Now & > liﬁip {/|dy,| since, by (41), RoC(d)

equals R. Thus there is an index K with
vnz K {/lda] < 3.

We henceforth only consider indices n dominating K.
For each k£ > n, then,

42d: lde] < 1/VF.

Sup-norm. For x € U and indices {>n,
Fia) = 1al@) = Y B
From (42d), then,
oo |1k
o)1) < X e
Since U owns z,

74w - i

where C' is the positive constant 1/[1 — {].
Taking a supremum over all x € U yields

o< 1Pm.
fn” = [V] C’

K. Sending n * oo sends

.0,

<\*o

42e: | fe —

for each pair ¢ >n >
RhS(42¢) — 0.

The limit lim,, f,,(0) exists, equaling cg. Now apply
the DUC Thm. ¢

A power-series with a new center. We show
that a function defined by a PS is analytic in its entire
ball-of-convergence.

43: The setting. We have a point P € C and a
sequence a C C such that a € (0,+00], where a ==
RoC(&). This engenders a C*-fnc from Bal, (P)—C,
by

43a: F(z) = Z;O:O ar- [z — PJ*.
Fix a new center Q€C with |Q — P| < a. Thus

B € (0,+oc], where (3 a—1|Q — P|.
).

43b: Moreoever, Balg(Q) C Bal, (P
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44: New-center theorem. Take P,Q,, 3,a and b
from (43). For each natnum k, this summation is
absolutely convergent:

44a: by = Z::k ay - (]Z) QN* e C

Moreoever, RoC(b) > 3 > 0. This value

; e oe s Ok
44b: G(z) = >, _ bwlz—Ql",
44c:  agrees with F(z), for each z € Balg(Q).

Lastly, for each natnum k,

44d: by = H-FOQ)

In other words, RhS(44b) is the Taylor series for F,
centered at (). O
Proof. WLOG P = 0. Fix a point Z € Balg(Q).

Writing Z = Q + [Z — Q], its N""-power is

N - k
ZRZO(JIX)'QN k'[Z_Q] .
Thus, since Z € Bal,(P),

£2) = > OaN-ZN

7" =

= Z ZaN )-QN [z - QI*.
N=0k=0 e
This is a sum, in a certain order, over the
set H:={(N,k) e NxN|N >k}. We need this
sum to be absolutely convergent. The sum

> N=0 Z{cv:o |hn k| equals

Z jan]-(3)1QI 12 = QIF = D lan| Y™,
N=0 k=0 N=0
where Y = |Q|+|Z—-Q|.  From Z € Bal,(0)

and (43b), we conclude that Y < «a. From the proof
of Root-test lemma (37, P.24), the righthand side of ()
is finite.

Since S = 2 %_o Sn o |hn | is finite, we can re-
verse the order of summation and conclude that

S =2 D lhwal
k=0 N=k

= Y| lanl- ()@Y -1z - QFF.

k=0 N=k
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We could have chosen our Z#(), thus allowing divi-
sion by |Z — Q|¥. Hence, each bracketed sum is finite.
So each sum in (44a) is absolutely convergent, and we
have a well-defined number by,.

For a general Z € Bal,(0), reversing the original
sum gives

F(Z) =303 hak
k=0 N—=k

= ZIEZQN QY- 1z - QPF,
0 N=k

which equals 3%, by - [Z — Q]".

Establishing (44d). Corollary 42c tells us that

y (42¢) by (44)

kb 2 ¢®(Q) FOQ).

Power-series

00
Zn:O

has positive RoC. Suppose y is a sequence of distinct
complex numbers converging to (), such that

45: Prop'n.

*: F(z) = an[z — Q"

VjeZi: Fly) = 0.

Then a is all-zero, and F is the zero function. O
Proof. WLOG, each y; # Q. FTSOC, suppose a # 0;

let L be the smallest index with ay # 0. Formally
dividing (*) by [z — Q]" gives PS

Z;O:O bk[z - Q]k )
where each by, = aryj. Since each y;—Q # 0,
G(y;) = Fly)/ly; — Q" = 0,

But RoC(b) = RoC(&) > 0, so G is cts in a nbhd of Q,
and thus G(Q) = lim(G(¥)) = 0. This contradicts
that G(Q) = by = ar, # 0. ¢

G(z) =
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46: PS Uniqueness Thm. Imagine power-series

F(z) = ZZO:O an- [z — P|" and
G(z) = ano bp [z — P|"
where B := BoC(&) N BoC(b) is non-void. Suppose

there is a set Y C B st. Fly = Gly, and Y has a
cluster point, QQo, in B. Then & =b, so F = G. %

Remark. It does not suffice for Y to have a
cluster-point on the boundary of B: Distinct functions

F(2) = sin(-L- =) and G := —F have Taylor series with
RoC =17. Yet

]:(yk:) =0= g(yk) ,  for each posint k,
where yj, =7 + 547 0

Proof of (46). Subracting PSes gives us a PS
@) = @

so that f|y = 0, making our goal.

For each ¢ € B := BoC(c), let U(q) denote the
largest open ball (centered at ¢) which fits inside B. By
the New-center thm, the Taylor-series for f, centered
at ¢, converges to f on all of U(q).

Pick a Y-cluster-point Qg € B. By (45), f is iden-
tically zero on U(Qo).

On the line-segment running between Q¢ and P,
we can pick a (finite) list of points

QO?Qla 50 -aQK—l,QK =P

such that each Qr € U(Qg—1). Arguing inductively,
since f is identically zero on U(Qg—1), the the Taylor-
series at (. has all-zero coeffs. This therefore holds
at P. So ¢ = (0,0,0,...). ¢

[z —P|"

47: Coro. Suppose F and G are analytic functions on
some connected open set V. C C. If

G(2)}

has a cluster point in V', then F = G. O

{zeV | F(z) =
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§Index, with symbols at the beginning

F): pth derivative of f, 1
Bal(), CldBal(), Sph(), 2
PBal(), Ann(), 2

Itr(), C1(), d(), C(): Operators, 2
(O:, C: Contour operators, 8

A, L., D, U: Contours, 13

K,: Keyhole contour, 17
Txk(z), Ri(2): Taylor stuff, 11
@, 1, | | on sets, 20

Addition-is-continuous thm, 20
annulus, 2
Argand plane, 1

ball of convergence, 24
boundary, 2

Cauchy Inequality , 9

Cauchy Integral Formula, 8
Cauchy-Goursat thm, 8
Cauchy-Riemann eqns, 4

CIF, see Cauchy Integral Formula
circular reasoning, see tautology
cis(), cosine + i-sine, 7

closed, closure, clopen, 2
compact set, 3

complement of a set, 2
Completing-the-square, 20
complex conjugate, 1, 6
Cone-boundedness Lemma, 10
Constancy thm, 5, 9

continuous, &

cos—sin zeros Lemma, 7

CoV: Change-of-Variable, 1

discriminant, 13, 20

DUC, Derivative uniform conver-
gence thm, proved in Prof.K
Adv.-Calc notes, 25

eventually positive, 24
exponential
complex, 6

Fund. thm of Algebra , 4, 10

Gauss mean value thm, 9
GCIF, see Generalized CIF
Generalized CIF thm, 8

Harmonic Lemma, 5

indicator function, 20, 25
inner-radius, 2

interior-point, 2

ISTProve, i.e: It-Suffices-to-prove
ITOA, i.e: In-terms-of

Jordan Lemma, 16

keyhole contour, 17

Limit-closed Lemma, 3
limit-closed, 3

Liouville thm, 9
Local-constancy Lemma, 9, 10

Maclaurin Series, 24
Maximum-modulus principle, 10
McS, see Maclaurin Series
metric space, 1
Minimum-modulus principle, 10
Morera's thm, 8

Mr. Rogers, see neighborhood
MS, MSes, see metric space
Multiplication-is-cts thm, 20

nbhd, see neighborhood
neighborhood, 2
Non-neg Lemma, 21

Open pullback Lemma, 3

open set, 2

Open-set Diff-path-conn. thm, 5
outer-radius, 2

Path-indep thm, 5, 8
path-independence property, &
PIP, see path-indep. property
polynomial
discriminant, 20
splits, 10
Taylor, 11
power series, 12, 24
Proof
circular, see circular reasoning
overlapping-ball, 10
PS, see power series

radius of convergence, RoC, 24
residue, 12

Same-RoC Lemma, 25
G, 8
set-of-convergence, 24
sphere, 2

symmetric difference, 20

tail of a sequence, 1
tautology, see Proof, circular
Taylor polynomial, 11
Taylor-remainder corollary, 11
Taylor-series thm, 11
Theorems

Addition-is-continuous, 20

Cauchy Inequality, 9

Cauchy Integral, 8

Cauchy-Goursat, 8

Cone-boundedness, 10

Constancy, 5, 9

cos—sin zeros, 7

Fund. thm of Algebra, 4, 10

Gauss mean value, 9

Generalized CIF, 8

Harmonic, 5

Jordan, 16

Limit-closed, 3

Liouville, 9

Local-constancy, 9, 10

Maximum-modulus, 10
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Minimum-modulus, 10
Morera's, 8
Multiplication-is-cts, 20
Non-neg, 21
Open pullback, 3
Open-set Diff-path-conn., 5
Path-indep, 5, 8
Same-RoC, 25
Taylor-remainder, 11
Taylor-series, 11
Unique fnc-limit, 3
Unique-limit, 2
Triangle-inequality, 1

Unique fnc-limit Lemma, 3
Unique-limit Lemma, 2

WLOG = Without-loss-of-generality,
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