Notes in the key of \mathbb{C}

Jonathan L.F. King, *Univ. of Florida* squash@ufl.edu http://squash.1gainesville.com/ 9 May, 2017 (at 10:40)

§Overview

A glance at Metric Spaces	1
Unique-limit Lemma	2
Limit-closed lemma	3
Unique fnc-limit Lemma	3
Open pullback lemma	3
Back home to \mathbb{C}	3
Open-set Differentially-path-connected Thm	5
Constancy theorem	5
Harmonic lemma	5
Path-indep theorem	5
$\mathbb{C} ext{-exponential}$	6
Examples from Fri.17Feb	7
cos-sin zeros Lemma	7
Cauchy-Goursat and friends	8
Morera's theorem	8
Cauchy Inequality	9
Liouville Thm	9
Local-constancy lemma	9
Fund. thm of Algebra	10
Cone-boundedness Lemma	10
	11
Taylor's thm	11
Taylor-remainder coro	11
CoV of Definite-integral to contour-integral, 1	13
Definite-integral from limit of contour-int., 2	14
Jordan's Lemma	16
Jordan Lemma	16
Keyhole contours, 3	17
Four failures	18
Applications of Rouché's thm	19
Notation Appendix	20
General Appendix	20
Addition-Cts thm	20
Mult-Cts thm	20
Non-neg Lemma	21
Sufficient condition for differentiability	22
Cauchy-Goursat for a rectangle	23
Radius of Convergence	24
Same-RoC lemma	25

Entrance. Use i for one of the sqroots of 1. Thus $i^2 = 1 = [-i]^2$. Henceforth, x, y, u, v denote reals, unless otherwise stated. A complex number can be written in form $[x \cdot 1] + [y \cdot i]$. The **real and imaginary parts** of $z := [x \cdot 1] + [y \cdot i]$ are

$$\operatorname{Re}(z) \coloneqq x$$
 and $\operatorname{Im}(z) \coloneqq y$.

(N.B.: We will usually write $[x \cdot 1] + [y \cdot i]$ as x + iy or as x + yi.) The std picture of \mathbb{C} is called the **Argand plane**. It

is useful to interpret algebraic operations, addition, multiplication, complex conjugation, geometrically on this plane.

The *complex conjugate* of z := x + iy is written as \overline{z} . It is

$$\overline{z} := \operatorname{Re}(z) - \operatorname{Im}(z) i \stackrel{\text{note}}{=} x - y i$$
.

Evidently $\forall \zeta, \omega, z \in \mathbb{C}$, with z = x + iy:

$$\begin{array}{rcl} \overline{\zeta+\omega} &=& \overline{\zeta}+\overline{\omega} & \text{and} & \overline{\zeta\cdot\omega} &=& \overline{\zeta}\cdot\overline{\omega}\,;\\ \operatorname{Re}(z) &=& [z+\overline{z}]/2 & \text{and} & \operatorname{Im}(z) &=& [z-\overline{z}]/[2\boldsymbol{i}]\,;\\ &z\overline{z} &=& |z|^2 &\xrightarrow{\operatorname{note}} x^2+y^2\,. \end{array}$$

Sequence notation. A sequence $\vec{\mathbf{x}}$ abbreviates $(x_1, x_2, x_3, ...)$. For a set Ω , expression " $\vec{\mathbf{x}} \subset \Omega$ " means $[\forall n \colon x_n \in \Omega]$. Use $\mathrm{Tail}_N(\vec{\mathbf{x}})$ for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of $\vec{\mathbf{x}}$. Given a fnc $f:\Omega\to\Lambda$ and an Ω -sequence $\vec{\mathbf{x}}$, let $f(\vec{\mathbf{x}})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_2), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$, then, let $\vec{\mathbf{x}} + \vec{\mathbf{y}}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{\mathbf{x}} + \vec{\mathbf{y}} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

A glance at Metric Spaces

The usual metric on \mathbb{C} is

$$\operatorname{Dist}(\zeta, \omega) := |\zeta - \omega|.$$

We will need to handle at least four MSes [metric spaces]: The Reals, the Complexes, $\mathbb{C} \times \mathbb{C}$ and the Riemann Sphere. As such, let's simplify and look at general metric spaces.

A *metric space* [MS] is a pair (X, m) where X is a set, and $m: X \times X \rightarrow [0, \infty)$ is a metric. A *metric* m satisfies that $\forall w, x, y, z \in X$:

MS1a:
$$m(w, w) = 0$$
.

28

MS1b: If
$$m(w, x) = 0$$
 then $w = x$.

MS2:
$$m(y, z) = m(z, y)$$
. [Symmetry]

MS3:
$$m(w, y) \leq m(w, x) + m(x, y)$$
. [\triangle -Inequality]

Index, with symbols at the beginning

Fix a point $\mathbf{p} \in \mathbf{X}$ and a "radius" $r \in \mathbb{R}$. Define **open** ball, closed ball, sphere and punctured (open) **ball** as follows:

$$\operatorname{Bal}_{r}(\mathbf{p}) := \left\{ w \in \mathbf{X} \mid \mathsf{m}(w, \mathbf{p}) < r \right\};$$

$$\operatorname{CldBal}_{r}(\mathbf{p}) := \left\{ w \in \mathbf{X} \mid \mathsf{m}(w, \mathbf{p}) \leqslant r \right\};$$

$$\operatorname{Sph}_{r}(\mathbf{p}) := \left\{ w \in \mathbf{X} \mid \mathsf{m}(w, \mathbf{p}) = r \right\};$$

$$\operatorname{PBal}_{r}(\mathbf{p}) := \left\{ w \in \mathbf{X} \mid 0 < \mathsf{m}(w, \mathbf{p}) < r \right\}.$$

Chasing definitions: When r is negative then all four sets are empty. When r = 0 then $Bal_0(\mathbf{p}) = \emptyset = PBal_0(\mathbf{p})$. And $CldBal_0(\mathbf{p}) = {\mathbf{p}} = Sph_0(\mathbf{p}).$ For non-negative α and r, define the open *annulus* as $[form is Ann_{Outer}^{Inner}()]$

$$\operatorname{Ann}_r^{\alpha}(\mathbf{p}) \ \coloneqq \ \left\{ w \in \mathbf{X} \mid \alpha < \mathsf{m}(w, \mathbf{p}) < r \right\}.$$

This is the emptyset unless $r > \alpha$, in which case the thickness of the annulus is $r - \alpha$. The superscript α and subscript r are, respectively, the *inner-radius* and *outer-radius* of annulus $\operatorname{Ann}_r^{\alpha}(\mathbf{p})$. An innerradius of zero has $Ann_r^0(\mathbf{p}) = PBal_r(\mathbf{p})$. Note that $\operatorname{Ann}_{\infty}^{\alpha}(\mathbf{p})$ is the exterior of a closed-ball. I.e

$$\operatorname{Ann}_{\infty}^{\alpha}(\mathbf{p}) = \mathbf{X} \setminus \operatorname{CldBal}_{\alpha}(\mathbf{p}).$$

Seq.-Limit. Seq $\vec{\mathbf{x}} \subset \mathbf{X}$ converges to a point $\mathbf{p} \in \mathbf{X}$ if $m(x_n, \mathbf{p}) \to 0$ as $n \nearrow \infty$. I.e, if for each $\varepsilon > 0$, there exists index K st. $\forall n \geq K$, we have $\mathsf{m}(x_n, \mathbf{p}) < \varepsilon$. Equiv.: $\forall \varepsilon > 0$, $\exists K \in \mathbb{Z}_+$ st. $\mathrm{Tail}_K(\vec{\mathbf{x}}) \subset \mathrm{Bal}_{\varepsilon}(\mathbf{p})$.

We indicate this convergence by $\lim(\vec{\mathbf{x}}) = \mathbf{p}$, or as $\left[\lim_{n\to\infty}x_n\right]=\mathbf{p}$. Let's now justify the equal-sign.

1: Unique-limit Lemma. In MS (X, m), suppose a sequence $\vec{\mathbf{x}}$ converges to points \mathbf{p} and \mathbf{q} . Then $\mathbf{p} = \mathbf{q}.\Diamond$

Pf. FTSOContradiction suppose $\mathbf{p} \neq \mathbf{q}$. By (MS1b), distance $m(\mathbf{p}, \mathbf{q})$ is positive; let's call it 2H. So it suffices to produce a point $b \in \mathbf{X}$ with

*:
$$m(b, \mathbf{p}) < H$$
 and $m(b, \mathbf{q}) < H$.

For then, symmetry (MS2) yields $m(\mathbf{p}, b) < H$. Now our Triangle Inequality chirps in with

$$2H \, \stackrel{\mathrm{def}}{=\!\!\!=} \, \mathsf{m}(\mathbf{p},\mathbf{q}) \, \stackrel{\triangle\text{-Ineq}}{\leqslant} \, \mathsf{m}(\mathbf{p},b) + \mathsf{m}(b,\mathbf{q}) \, \stackrel{\mathrm{note}}{\leqslant} \, 2H \, ,$$

i.e, that 2H < 2H. \gg

Length H is half the distance, and b is close to both.

Obtaining such a b. Of course, the only place we could get such a b is from $\vec{\mathbf{x}}$; we'll show, for a large enough index M, that $b := x_M$ satisfies (*). To do that, we'll simply apply the defn of limit.

Since $\lim(\vec{\mathbf{x}}) = \mathbf{p}$, there exists index K such that $[n \geqslant K] \Rightarrow \mathsf{m}(x_n, \mathbf{p}) < H$. And \exists an index L such that $[n \geqslant L] \Rightarrow \mathsf{m}(x_n, \mathbf{q}) < H$. Happily, $M := \mathrm{Max}(K, L)$ dominates both K and L, so $b := x_M$ fulfills (*).

Open/closed sets. A set $U \subset X$ is open [in X] if U is a union of open balls (possibly ∞ ly many).

The *complement* [in X] of an X-subset S is $X \setminus S$. If X is understood, the complement may be written as S^c or C(S).

A set $E \subset \mathbf{X}$ is **closed** [in \mathbf{X}] if its \mathbf{X} -complement is open. $^{\bigcirc 1}$ If a set is both open and closed, then it is called *clopen*. In \mathbb{C} , the only clopen sets are the whole space, \mathbb{C} , and its complement \emptyset , the empty set. Some MSes, however, have non-trivial clopen subsets.

For a subset $S \subset \mathbf{X}$, a pt $p \in S$ is "an *interior***point** of S" if there exists an open ball B with $p \in B \subset \mathbf{X}$. I.e, $\exists r > 0$ with $\mathrm{Bal}_r(p) \subset S$. Relations "neighborhood of" and "interior-pt of" are inverses: Set S is a "neighborhood of p" IFF p is an interiorpoint of S. Use *nbhd* to abbreviate "neighborhood".

The interior of S is

$$Itr(S) := \{ p \in S \mid p \text{ is an interior-pt of } S \}.$$

Equiv., the interior of S is the union of all open subsets of S. Equiv., Itr(S) is the largest open subset of S. Consequently, S is open IFF Itr(S) = S.

The closure of S is

$$Cl(S) := \{ p \in \mathbf{X} \mid \forall r > 0, \text{ open ball } Bal_r(p) \text{ hits } S \}.$$

Equiv., Cl(S) is the intersection of all closed supersets of S. Equiv., Cl(S) is the smallest closed superset of S. Consequently, S is closed IFF Cl(S) = S.

Closure-of and Interior-of are dual notions in that $\mathbb{C}(\mathrm{Cl}(E)) = \mathrm{Itr}(\mathbb{C}(E)).$

The "boundary of set S [in X]" is

$$\partial(S) := \left\{ p \in \mathbf{X} \mid \forall r > 0, \text{ open ball } \mathrm{Bal}_r(p) \\ \text{hits both } S \text{ and } \mathbf{X} \setminus S. \right\}.$$

So
$$\partial(S) = \operatorname{Cl}(S) \cap \operatorname{Cl}(S^c)$$
.

^{♡1}Typically, most sets in a MS are neither open nor closed.

A set $S \subset \mathbf{X}$ is *limit-closed* [in \mathbf{X}] if $\forall \vec{\mathbf{s}} \subset S$: Whenever $\mathbf{p} \coloneqq \lim(\vec{\mathbf{s}})$ exists in \mathbf{X} , then $\mathbf{p} \in S$.

2: Limit-closed lemma. Set $E \subset \mathbf{X}$ is closed *IFF* E is limit-closed. \Diamond

 $Pf(\Rightarrow)$. Consider a seq $\vec{\mathbf{s}} \subset E$ and limit $\mathbf{p} := \lim(\vec{\mathbf{s}})$ in \mathbf{X} . Were \mathbf{p} in the complement $U := \mathbf{X} \setminus E$, then $\exists r > 0$ with $\operatorname{Bal}_r(\mathbf{p}) \subset U$. But this implies, for each n, that $\mathsf{m}(s_n, \mathbf{p}) \geqslant r$. And that contradicts the supposed convergence of $\vec{\mathbf{s}}$ to \mathbf{p} .

 $Pf(\Leftarrow)$. FTSOC, suppose E fails to be closed. Then $U := \mathbf{X} \setminus E$ is not open, so $\exists \mathbf{q} \in U$ satisfying that every ball about \mathbf{q} sticks out of U, that is, hits E.

Consequently, for $n = 1, 2, 3, \ldots$, the intersection

$$E \cap [\operatorname{Bal}_{1/n}(\mathbf{q})]$$

is non-void. Pick a point in that intersection, and call it, say, z_n . Then $[\lim_{n\to\infty} z_n]$ equals \mathbf{q} , contradicting that E was limit-closed.

Defn. A set $E \subset \mathbf{X}$ is **compact** if each seq $\vec{\mathbf{s}} \subset E$ admits a subsequence $\vec{\mathbf{e}} \subset \vec{\mathbf{s}}$ which converges to a point in E. That is, there exist indices $n_1 < n_2 < \dots$ and a point $\mathbf{p} \in E$ s.t $[\lim_{k \to \infty} s_{n_k}] = \mathbf{p}$.

The above Limit-closed lemma implies that compact sets are automatically $^{\bigcirc 2}$ closed.

Fnc limits. Consider MSes (\mathbf{X}, \mathbf{m}) and (Ω, μ) , points $\mathbf{p} \in \mathbf{X}$ and $\boldsymbol{\omega} \in \Omega$, and a fnc $h: [\mathbf{X} \setminus \{\mathbf{p}\}] \to \Omega$. Expression

$$\left[\lim_{z\to\mathbf{p}}h(z)\right] = \boldsymbol{\omega}$$

means: $\forall \varepsilon > 0, \exists \delta > 0 \text{ such that }$

 $\forall z \in \mathbf{X}$: If $0 < \mathsf{m}(z, \mathbf{p}) < \delta$ then $\mu(h(z), \boldsymbol{\omega}) < \varepsilon$.

3: Equiv.: $h(\operatorname{PBal}_{\delta}(\mathbf{p})) \subset \operatorname{Bal}_{\varepsilon}(\boldsymbol{\omega})$.

Equiv.: $\operatorname{PBal}_{\delta}(\mathbf{p}) \subset h^{-1}(\operatorname{Bal}_{\varepsilon}(\boldsymbol{\omega}))$.

These balls are in different spaces, with different metrics. To write, for example, this last property *precisely*, we'd write

$$\mathsf{m} ext{-}\mathrm{PBal}_{\delta}(\mathbf{p}) \ \subset \ h^{-1}\Big(\mu ext{-}\mathrm{Bal}_{arepsilon}(oldsymbol{\omega})\Big)\,.$$

3a: Unique fnc-limit Lemma. With notation from above [WNFAbove], if

$$\left[\lim_{z\to\mathbf{p}}h(z)
ight] \,=\, oldsymbol{\omega}_1 \quad ext{and} \quad \left[\lim_{z\to\mathbf{p}}h(z)
ight] \,=\, oldsymbol{\omega}_2\,,$$

then $\omega_1 = \omega_2$. Pf. See proof of Unique-limit Lemma. \Diamond

3b: *Defn.* Fnc $g:(\mathbf{X}, \mathbf{m}) \to (\Omega, \mu)$ is *continuous* at a point $\mathbf{p} \in \mathbf{X}$ if $\lim_{z \to \mathbf{p}} g(z) = g(\mathbf{p})$. We say "g is *continuous*" if g is cts at each point in $\mathrm{Dom}(g)$.

3c: Thm. [WNFAbove]. Fnc g is continuous at **p** IFF

For each sequence
$$\vec{\mathbf{z}} \subset \mathbf{X}$$
, if $\lim(\vec{\mathbf{z}}) = \mathbf{p}$, then $\lim(g(\vec{\mathbf{z}})) = g(\mathbf{p})$.

 \Diamond

4a: Open pullback lemma. Fnc $h: (\mathbf{X}, \mathbf{m}) \to (\Omega, \mu)$ is [everywhere] cts IFF for each Ω -open set $\Lambda \subset \Omega$, its pullback $h^{-1}(\Lambda)$ is open in \mathbf{X} . **Proof.** Exercise. \Diamond

4b: Example. For a cts h, pullbacks preserve openness. However, push-forwards need not. E.g, the sine fnc $\sin: \mathbb{R} \to (-3, 3)$ is cts, and $U := (0, \frac{3\pi}{4})$ is open in \mathbb{R} . Yet the push-forward set $\sin(U)$, is the half-open interval (0, 1], which is not an open [nor closed] subset of the output-space, (-3, 3).

Back home to \mathbb{C}

As a nice exercise, let's state and prove a fact about subsets of \mathbb{C} . [The same result holds in every MS.] Let $\mathsf{m}(z,w)\coloneqq |z-w|$ denote the usual metric on \mathbb{C} .

5: Thm. For an arbitrary $S \subset \mathbb{C}$, the set

$$E := S \cup \partial(S)$$

is closed.

 $^{^{\}circ 2}$ Our defn of *compact* is for MSes, and it generalizes to topological spaces. In a general topological space, is possible for a compact set to not be closed.

Set-up. ISTProve that $U := [\mathbb{C} \setminus E]$ is open.

FTSOC, suppose U not open. Then there exists a point $\mathbf{p} \in U$ such that $\mathbf{p} \notin \mathrm{Itr}(U)$. Imagine we could establish

5a:
$$\forall r > 0, \exists \text{ a point } q \in S \text{ with } \mathsf{m}(q, \mathbf{p}) < r.$$

Then every ball about \mathbf{p} , hits S. But every ball also hits $\mathbb{C} \setminus S$, since the ball owns $\mathbf{p} \in U$. And this implies the contradiction that \mathbf{p} is a boundary-pt of S.

Proof of (5a). Fix an r>0. Since **p** is not a U-interiorpoint, $\exists b \in E$ with $\mathsf{m}(b,\mathbf{p}) < r$. If b is in S, then we are done.

Otherwise, b must be in $\partial(S)$. Recall that difference

$$r - \mathsf{m}(b, \mathbf{p})$$

is positive. Since $b \in \partial(S)$, there are points of S arbitrarily close to b. In particular, $\exists q \in S$ with

*:
$$m(q,b) < r - m(b,\mathbf{p})$$
.

Thus

$$\mathsf{m}(q,\mathbf{p}) \ \stackrel{\triangle\text{-Ineq}}{\leqslant} \ \mathsf{m}(q,b) + \mathsf{m}(b,\mathbf{p}) \ \stackrel{\mathrm{by}\ (*)}{\leqslant} \ r$$

as desired.

Polynomials over \mathbb{C}. An old theorem, slightly misnamed:

6: Fundamental Theorem of Algebra (Gauss and others). Consider a monic \mathbb{C} -polynomial

$$h(t) := t^N + B_{N-1}t^{N-1} + \dots + B_1t + B_0.$$

Then h factors completely over \mathbb{C} as

$$h(t) = [t - Z_1] \cdot [t - Z_2] \cdot \ldots \cdot [t - Z_N], \qquad \Diamond$$

for a list $Z_1, ..., Z_N \in \mathbb{C}$, possibly with repetitions. This list is unique up to reordering.

If h is a **real** polynomial, i.e $\overline{h} = h$, then h factors over \mathbb{R} as a product of monic \mathbb{R} -irreducible linear and \mathbb{R} -irred, quadratic polynomials. The product is unique up to reordering. **Proof.** See (16e, P.10).

[There is a proof in my A Primer on Polynomials pamphlet].

Cauchy-Riemann eqns. On an open set $D \subset \mathbb{C}$, consider a fnc $h: D \to \mathbb{C}$, which we have written as h(x + iy) = u(x, y) + iv(x, y), giving names to its real and imaginary parts.

A point x + iy can also be written in polar coordinates as $re^{i\theta}$, with $r,\theta \in \mathbb{R}$. So we can view u [and v] either as a fnc of (x,y) or as a fnc of (r,θ) . Differentiability of h() at a particular point z, forces equality of partial-derives at z. The eqns are called the $Cauchy-Riemann\ eqns$:

7a: Cartesian:
$$u_x = v_y$$
 and $u_y = -v_x$.
7b: Polar: $r \cdot u_r = v_\theta$ and $u_\theta = -r \cdot v_r$.

Proof of (7a). Firstly, for h to be diff'able at z means: Our h is defined in a nhbd of z, and $\lim_{\Delta z \to 0} \frac{h(z+\Delta z)-h(z)}{\Delta z}$ exists in $\mathbb C$.

Let
$$w := h(z)$$
 and $\Delta w := h(z + \Delta z) - h(z)$.

(Case: Pure real: $\Delta z := \Delta x$) Computing, Δw equals

$$u(x + \Delta x, y) + iv(x + \Delta x, y) - [u(x, y) + iv(x, y)]$$

= $[u(x + \Delta x, y) - u(x, y)] + i[v(x + \Delta x, y) - v(x, y)]$

Hence, $\frac{\Delta w}{\Delta z}$ equals

$$\frac{u(x+\Delta x,\,y)\,-\,u(x,y)}{\Delta x}\,+\,\boldsymbol{i}\!\cdot\!\frac{v(x+\Delta x,\,y)\,-\,v(x,y)}{\Delta x}\,.$$

Sending $\Delta x \to 0$ yields that

$$\dagger: \quad \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = u_x(x,y) + \mathbf{i} \cdot v_x(x,y).$$

Case: Pure imag: $\Delta z \coloneqq \boldsymbol{i}\Delta y$ Our Δw equals

$$[u(x, y + \Delta y) - u(x, y)] + i[v(x, y + \Delta y) - v(x, y)].$$

So
$$\frac{\Delta w}{\Delta z}$$
 equals $\frac{u(x,y+\Delta y)-u(x,y)}{i\Delta y}+i\cdot\frac{v(x,y+\Delta y)-v(x,y)}{i\Delta y}$,

$$-i \cdot \frac{u(x, y + \Delta y) - u(x, y)}{\Delta y} + \frac{v(x, y + \Delta y) - v(x, y)}{\Delta y}$$

Launching $\Delta y \to 0$ reveals that

$$\ddagger: \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = -\mathbf{i} \cdot u_y(x,y) + v_y(x,y).$$

Equating the real parts of (\dagger) and (\ddagger) gives LhS(7a). And equating the imaginary parts produces RhS(7a).

Proof (7a) \Rightarrow (7b). The CoV from polar to cart coords is

$$(x,y) = (r\cos(\theta), r\sin(\theta)).$$

Abbreviating $\mathbf{c} := \cos(\theta)$ and $\mathbf{s} := \sin(\theta)$, then, $^{\heartsuit 3}$

$$\frac{\partial u}{\partial r} = \left[\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r} \right] + \left[\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial r} \right] = \left[u_x \cdot \mathbf{c} \right] + \left[u_y \cdot \mathbf{s} \right].$$

Computing all the first-partials gives

$$u_r = u_x \cdot \mathbf{c} + u_y \cdot \mathbf{s};$$
 $u_\theta = -r[u_x \cdot \mathbf{s} - u_y \cdot \mathbf{c}];$
 $v_r = v_x \cdot \mathbf{c} + v_y \cdot \mathbf{s};$ $v_\theta = r[v_y \cdot \mathbf{c} - v_x \cdot \mathbf{s}].$

Applying (7a) to write all the partials ITOf x, gives

$$\dagger : \quad u_r = u_x \cdot \mathbf{c} - v_x \cdot \mathbf{s}; \qquad u_\theta = \neg r [u_x \cdot \mathbf{s} + v_x \cdot \mathbf{c}];$$

$$\ddagger: v_r = v_x \cdot \mathbf{c} + u_x \cdot \mathbf{s}; \quad v_\theta = r[u_x \cdot \mathbf{c} - v_x \cdot \mathbf{s}].$$

Comparing $LhS(\dagger)$ with $RhS(\dagger)$, and $RhS(\dagger)$ with $LhS(\dagger)$, yields (7b).

7c: Caveat. If z is not the origin, i.e $r \neq 0$, then the converse (7b) \Rightarrow (7a) holds. However, at the origin (7b) always holds, hence has no content. [E.g, $u_{\theta}(0)$ is always zero, since $[\theta \mapsto 0 \cdot \exp(i\theta)]$ necessarily has derivative zero.] So at the origin, (7b) does <u>not</u> imply (7a).

8: Open-set Differentially-path-connected Thm. Consider a path-connected subset $E \subset \mathbb{C}$. If E is open, then $\forall p,q \in E$, there exists a <u>differentiable</u> path $z:[0,1] \rightarrow E$ with z(0) = p and z(1) = q.

Two consequences of the Cauchy-Riemann eqns.:

9a: Constancy theorem. Consider a path-connected open $D \subset \mathbb{C}$, and holomorphic $h: D \to \mathbb{C}$.

- i: If $h' \equiv 0$, then h is constant on E.
- ii: If h and \overline{h} are holomorphic, then $h \equiv 0$.
- iii: If |h| is constant, then h is constant.

Pf of (i). Given $p,q \in D$, ISTProve h(q) = h(p).

Our (8) gives a diff'able $z:[0,1] \rightarrow E$ with z(0) = p and z(1) = q. So

$$0 = \int_0^1 h'(z(t)) \cdot z'(t) dt = \int_0^1 [h \circ z]'$$

= $h(z(1)) - h(z(0))$
= $h(a) - h(b)$.

Pf of (ii). Write h with real and imaginary parts, as $h = u + \mathbf{i}v$. So $\overline{h} = u + \mathbf{i} \cdot [-v]$. C-R eqns of h thus say $u_x = v_y$, and of \overline{h} say $u_x = -v_y$. Hence $u_x \equiv 0$. The other C-R eqn shows $v_x \equiv 0$. Thus $h' \xrightarrow{\text{note}} u_x + \mathbf{i}v_x$ is identically zero. Now apply (i).

Pf of (iii). If $|h| \equiv 0$, then $h \equiv 0$. So WLOG, number $\kappa := |h|^2 \neq 0$. As h is never zero, I may divide to conclude that $\overline{h}() = \frac{\kappa}{h()}$ is holomorphic. Now apply (ii).

9b: Harmonic lemma. Suppose h is holomorphic an open $D \subset \mathbb{C}$. Then $[\operatorname{Re} \circ h]$ and $[\operatorname{Im} \circ h]$ are each harmonic on D. Proof. See Brown&Churchill. \Diamond

Path-independence and differentiability. Here is the non-trivial part of the thm from P.141 & P.146 of Brown&Churchill, 9th-ed..

Say that fnc $f:D\to\mathbb{C}$ has the **path-independence property** [PIP] if for all closed-contours \mathbb{C} : The contour-integral $\int_{\mathbb{C}} f$ exists, and equals zero.

10a: Path-indep theorem. On an open $D \subset \mathbb{C}$, suppose $f:D \to \mathbb{C}$ is continuous. If f has the path-independence property, then there exists a differentiable function $g:D \to \mathbb{C}$, with g'=f.

Proof. WLOG D is non-void and connected, since we can argue for each path-connected component separately.

Fix a "base-point" $z_0 \in D$. For each $p \in D$ there exists a contour \mathbb{C} from z_0 to p, since D is path-connected, and courtesy (8). Define $g(p) := \int_{\mathbb{C}} f$; this is well-defined because f has the PIP.

To show that g is diff'able at an arbitrary $\mathbf{p} \in D$, and that $g'(\mathbf{p}) = f(\mathbf{p})$, we fix an $\varepsilon > 0$. ISTProduce a $\delta > 0$ such that for all $z \in \mathrm{PBal}_{\delta}(\mathbf{p})$:

$$\label{eq:continuous_problem} \dagger \mathbf{:} \qquad \quad \left| \frac{g(\mathbf{p} + \Delta z) - g(\mathbf{p})}{\Delta z} \, - \, f(\mathbf{p}) \right| \; \leqslant \; \varepsilon \, ,$$

where we are writing z as $\mathbf{p} + \Delta z$.

 $^{^{\}circ 3}$ In Newton's notation, $u_x \cdot \mathbf{c}$ is $u_x(r\cos(\theta), r\sin(\theta)) \cdot \cos(\theta)$.

Obtaining δ . Since D is open, $\exists r > 0$ such that $\operatorname{Bal}_r(\mathbf{p}) \subset D$. And since f is cts at \mathbf{p} , there exists $\alpha > 0$ so that each $z \in \operatorname{Bal}_{\alpha}(\mathbf{p})$ has $|f(z) - f(\mathbf{p})| < \varepsilon$. Let $\delta := \operatorname{Min}(r, \alpha)$, which we note is positive.

The Estimate. Fix a point $z \in \operatorname{PBal}_{\delta}(\mathbf{p})$; so displacement $\Delta z \coloneqq z - \mathbf{p}$ has $|\Delta z| < \delta$.

Let L denote the line-segment contour from **p** to z. We parametrize L as $w:[0,1] \rightarrow D$, by

$$w(t) := \mathbf{p} + [t \cdot \Delta z]. \text{ So}$$

$$w'(t) = \Delta z. \text{ Thus}$$

$$g(\mathbf{p} + \Delta z) - g(\mathbf{p}) = \int_0^1 f(w(t)) \cdot w'(t) \, dt$$

$$= \Delta z \cdot \int_0^1 f(\mathbf{p} + [t \cdot \Delta z]) \, dt.$$

Dividing by Δz [Exer: Why is $\Delta z \neq 0$?], then subtracting

$$f(\mathbf{p}) \stackrel{\text{note}}{=} \int_0^1 f(\mathbf{p}) \, \mathrm{d}t$$

from both sides, yields that

$$\frac{g(\mathbf{p}+\Delta z)-g(\mathbf{p})}{\Delta z}-f(\mathbf{p}) = \int_0^1 \left[f(\mathbf{p}+[t\,\Delta z])-f(\mathbf{p})\right] dt.$$

Taking abs.values and using our Triangle-Ineq-for-Integrals, yields

$$\ddagger: \left| \frac{g(\mathbf{p} + \Delta z) - g(\mathbf{p})}{\Delta z} - f(\mathbf{p}) \right| \le \int_0^1 \left| f(\mathbf{p} + [t\Delta z]) - f(\mathbf{p}) \right| dt.$$

But each $\mathbf{p} + [t\Delta z]$ is in the δ -ball about \mathbf{p} . Hence the integrand in (\ddagger) is $\leqslant \varepsilon$. Thus RhS(\ddagger) $\leqslant \varepsilon \cdot [1 - 0] = \varepsilon$, yielding (\dagger) , as desired.

C-exponential

For $z := x \cdot 1 + y \cdot i$ with $x, y \in \mathbb{R}$, its **complex conjugate** \overline{z} is $x \cdot 1 - y \cdot i$. Its real and imaginary parts are

$$\operatorname{Re}(z) := x = \frac{z + \overline{z}}{2}, \ \operatorname{Im}(z) := y = \frac{z - \overline{z}}{2i}.$$

By the Pythagorean thm, $|z|^2 = x^2 + y^2 = z\overline{z}$.

For $\mu, \nu \in \mathbb{C}$, note, $\overline{\mu + \nu} = \overline{\mu} + \overline{\nu}$ and $\overline{\mu \cdot \nu} = \overline{\mu} \cdot \overline{\nu}$. Let's extend the exponential fnc to the complex plane.

11a: Defn. For $z \in \mathbb{C}$, define

$$\exp(z) := e^z := \sum_{n=0}^{\infty} \frac{1}{n!} \cdot z^n = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \dots;$$

$$\cos(z) := \sum_{j=0}^{\infty} \frac{[-1]^j}{[2j]!} \cdot z^{2j} = 1 - \frac{1}{2}z^2 + \frac{1}{24}z^4 - \dots;$$

$$\sin(z) := \sum_{k=0}^{\infty} \frac{[-1]^k}{[2k+1]!} \cdot z^{2k+1} = z - \frac{1}{6}z^3 + \frac{1}{120}z^5 - \dots$$

 \Diamond

Each series has
$$\infty$$
-RoC.

Since we have absolute convergence of each series at each z, we can re-order terms without changing convergence.

11b: Lemma.
$$Fix \ \alpha, \beta \in \mathbb{C}$$
. Then
$$\mathsf{e}^{\alpha} \cdot \mathsf{e}^{\beta} \ = \ \mathsf{e}^{\alpha+\beta} \, . \qquad \diamondsuit$$

Proof. For natnum N, recall the Binomial thm which says that

*:
$$\sum_{j+k=N} {N \choose j,k} \cdot \alpha^j \beta^k = [\alpha + \beta]^N,$$

where the sum is over all ordered-pairs (j, k) of natnums. By its defn [and abs.convergence], $e^{\alpha}e^{\beta}$ equals

$$\left[\sum_{i=0}^{\infty} \frac{1}{j!} \cdot \alpha^{j}\right] \cdot \left[\sum_{k=0}^{\infty} \frac{1}{k!} \cdot \beta^{k}\right] = \sum_{N=0}^{\infty} \left[\sum_{i+k=N} \frac{1}{j!} \frac{1}{k!} \cdot \alpha^{j} \beta^{k}\right].$$

But $\frac{1}{i! \cdot k!}$ equals $\frac{1}{N!} \cdot \frac{N!}{i! \cdot k!}$. Hence $e^{\alpha} e^{\beta}$ equals

$$\sum_{N=0}^{\infty} \frac{1}{N!} \Big[\sum_{j+k=N} {N \choose j,k} \cdot \alpha^j \beta^k \Big] \ \stackrel{\text{by } (*)}{=\!=\!=\!=} \ \sum_{N=0}^{\infty} \frac{1}{N!} [\alpha + \beta]^N \,,$$

which is the defn of $e^{\alpha+\beta}$.

11c: Lemma. For θ, x, y, z complex numbers:

11.1:
$$e^{i\theta} = [\cos(\theta) + i\sin(\theta)] =: \cos(\theta)$$
. Hence

11.2:
$$\frac{e^{i\theta} + e^{-i\theta}}{2} = \cos(\theta), \ \frac{e^{i\theta} - e^{-i\theta}}{2i} = \sin(\theta). \text{ Also,}$$

11.3:
$$e^{x+iy} = e^x \cdot e^{iy} = e^x \cdot [\cos(y) + i\sin(y)]$$
, so

11.4:
$$e^{x-iy} = e^x \cdot [\cos(y) - i\sin(y)]$$

since $\cos(-y) = \cos(y)$ and $\sin(-y) = -\sin(y)$. When θ is real, then,

11.5:
$$\operatorname{Re}(e^{i\theta}) = \cos(\theta)$$
 and $\operatorname{Im}(e^{i\theta}) = \sin(\theta)$.

Since the coefficients in their power-series expansions are all real, our exp(),cos(),sin() fncs each commute with complex-conjugation, i.e

11.6:
$$\overline{\exp(z)} = \exp(\overline{z}), \overline{\cos(z)} = \cos(\overline{z}), \overline{\sin(z)} = \sin(\overline{z});$$

Finally, the familiar translation-identities

11.7:
$$\cos(z - \frac{\pi}{2}) = \sin(z)$$
, $\sin(z + \frac{\pi}{2}) = \cos(z)$

extend to the complex plane.

Examples from Fri.17Feb

Two examples from class.

12: cos-sin zeros Lemma. All zeros of [complex] $\cos()$ lie on the real axis. In particular, $\cos()$ has only one period, that of 2π . Both stmts hold for $\sin()$. \diamond

Proof for cos. Fix a z = x + iy st. cos(z) = 0. Thus

$$0 = 2\cos(z) = \exp(\mathbf{i} \cdot [x + \mathbf{i}y]) + \exp(-\mathbf{i} \cdot [x + \mathbf{i}y])$$

= $\exp(-y + \mathbf{i}x) + \exp(y - \mathbf{i}x)$
= $e^{-y}\operatorname{cis}(x) + e^{y}\operatorname{cis}(-x)$.

Since these summands cancel, they must have equal abs. values. Thus, since x and y are real,

*:
$$e^{-y} = e^{-y} \cdot |\operatorname{cis}(x)| = e^{y} \cdot |\operatorname{cis}(-x)| = e^{y}$$
.

But \mathbb{R} -exp() is 1-to-1, so (*) implies that $\neg y = y$. Hence y = 0, i.e z is real. *Integration example.* Fix a real $\alpha > 0$. To compute

$$J := \int_0^\alpha \mathsf{e}^{it} \, \mathrm{d}t \,,$$

we could directly use an antiderivative: So J equals

†:
$$\frac{1}{i} e^{it} \Big|_{t=0}^{t=\alpha} = -i [e^{i\alpha} - 1].$$

Alternatively, we can decompose into real and imaginary parts, as J = U + iV, where

$$V := \int_0^\alpha \sin(t) dt = -\cos(t) \Big|_{t=0}^{t=\alpha} = -[\cos(\alpha) - 1]$$

and

$$U := \int_0^\alpha \cos(t) dt = \sin(t) \Big|_{t=0}^{t=\alpha} = \sin(\alpha).$$

With $S := \sin(t)$ and $C := \cos(t)$, then, U + iV equals

$$S - i[C - 1] = -i \cdot [iS + C - 1]$$
$$= -i \cdot [\operatorname{cis}(\alpha) - 1] \xrightarrow{\text{note}} \operatorname{RhS}(\dagger),$$

as expected. In this instance, direct integration was faster than breaking the integrand into real and imaginary parts. $\hfill\Box$

Cauchy-Goursat and friends

Let **SCC** mean "positively oriented simple-closed-contour". For a SCC C, have \mathring{C} be the (open) region C encloses, and let \widehat{C} mean C together with \mathring{C} . So \widehat{C} is $C \cup \mathring{C}$; it is automatically simply-connected and is a closed bounded set.

Convention: Each circle mentioned, e.g $\operatorname{Sph}_r(\mathbf{p})$, is also viewed as an SCC , i.e, as positively oriented.

13a: Cauchy-Goursat Theorem (C-Goursat). Consider SCC C, and function f which is holomorphic on \hat{C} . Then $\int_{C} f = 0$.

13b: Cauchy Integral Formula (CIF). For a fnc f which is holomorphic on \widehat{C} , where C is a SCC, then

$$f(w) = \frac{1}{2\pi i} \int_{\mathbf{C}} \frac{f(z)}{z - w} \, \mathrm{d}z,$$

for each point $w \in \mathring{\mathsf{C}}$.

Proof outline. Take r>0 small enough that circle $S_r := \operatorname{Sph}_r(w)$ is enclosed by C . Since $h(z) := \frac{f(z)}{z-w}$ is holomorphic on the annulus bounded by C and S_r , our C -Goursat implies that $\int_{\mathsf{C}} h = \int_{S_r} h$. Now send $r \searrow 0$ and use that f is cts at w. Etc.

13c: Generalized CIF (GCIF). A function f which is holomorphic on open set D, is ∞ ly-differentiable. Moreover, consider a SCC C with $\widehat{\mathsf{C}} \subset D$. Then for each point $w \in \mathring{\mathsf{C}}$, we have that

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\mathsf{C}} \frac{f(z)}{[z-w]^{n+1}} \, \mathrm{d}z,$$

for n = 0, 1, 2, ...

Pf sketch. For each n, verify that $\frac{f(z)}{[z-w]^{n+1}}$ satisfies the conditions for differentiating under the integral-sign w.r.t w. Then differentiate.

13d: Morera's theorem. On open set D suppose $cts\ f$ has path-independence property: $\int_{\mathbb{C}} f = 0$ for each closed contour $\mathbb{C} \subset D$. Then f is holomorphic. \diamondsuit

Proof. By Path-indep thm (10a, P.5), our f has an antiderivative g. Courtesy GCIF, this g is ∞ ly-differentiable, hence f is differentiable.

14.1: The set-up for multiple poles. Consider simply-connected D, a SCC $C \subset D$, and distinct points w_1, \ldots, w_L in \mathring{C} . Positive integers J_1, \ldots, J_L determine a polynomial

*:
$$\mathbf{P}(z) := [z - w_1]^{J_1} \cdot [z - w_2]^{J_2} \cdot \ldots \cdot [z - w_L]^{J_L}$$
.

For k = 1, ..., L, let $P_k(z)$ be product RhS(*), but omitting the k^{th} -term. E.g.

$$P_3(z) := [z - w_1]^{J_1} \cdot [z - w_2]^{J_2} \cdot \prod_{k=1}^{L} [z - w_k]^{J_k}.$$

Lastly, consider SCCs $E_1, ..., E_L$ in D, which avoid all the w-points. Moreover, suppose E_k encloses point w_k , but none of the other w-points.

14.2: Corollary. Using notation from (14.1), suppose h is holomorphic on D. Then

†:
$$\int_{\mathbf{C}} \frac{h(z)}{\mathbf{P}(z)} dz = \sum_{k=1}^{L} \int_{\mathbf{E}_{k}} \frac{h(z)}{\mathbf{P}(z)} dz.$$

Further, defining $h_k(z) := \frac{h(z)}{P_k(z)}$ then

Since $h_k()$ is holomorphic on $\widehat{\mathsf{E}}_k$, the RhS(‡) can be computed by GCIF, theorem (13c)

14.3: CIF example. [Problem $\#2a,b^P.170$] Let C be the radius=2 circle $Sph_2(i)$; it passes through points -i and 3i. We seek to compute

*a:
$$J := \int_{\mathcal{C}} \frac{1}{z^2 + 4} \, \mathrm{d}z.$$

Soln a: Setting $\alpha := 2i$ and $\beta := -2i$, we factor $z^2 + 4$ as $[z - \alpha] \cdot [z - \beta]$. So point α is enclosed by \mathbb{C} , whereas point β is outside of \mathbb{C} . Hence $f(z) := \frac{1}{z - \beta}$ is holomorphic on $\widehat{\mathbb{C}}$. Writing the above integrand as $\frac{f(z)}{z - \alpha}$, then, CIF (13b) yields

$$J = 2\pi \mathbf{i} \cdot f(\alpha) = 2\pi \mathbf{i} \cdot \frac{1}{\alpha - \beta}$$
$$= 2\pi \mathbf{i} \cdot \frac{1}{4\mathbf{i}} = \frac{\pi}{2}.$$

The second part of the problem asks us to compute

$$J_b := \int_{\mathbf{C}} \frac{1}{[z^2 + 4]^2} \, \mathrm{d}z.$$

Soln b: The integrand's denominator factors as $[z - \alpha]^2 \cdot [z - \beta]^2$. Rational fnc $h(z) := \frac{1}{[z - \beta]^2}$ is holomorphic on \widehat{C} . Writing the above integrand as $\frac{h(z)}{[z - \alpha]^2}$, then, applying GCIF [thm (13c)] with n=1, gives

$$J_b = \frac{2\pi i}{1!} \cdot h'(\alpha) = 2\pi i \cdot h'(\alpha).$$

Note $h'(z) = \frac{-2}{[z-\beta]^3}$, so $h'(\alpha) = -2/[4i]^3 = 1/[32i]$. Consequently,

$$J_b = 2\pi \boldsymbol{i} \cdot \frac{1}{32\boldsymbol{i}} = \frac{\pi}{16}.$$

15a: Cauchy Inequality. Fix $w \in \mathbb{C}$. For r>0, let $\mathsf{C}_r := \mathrm{Sph}_r(w)$. Consider an f which is holomorphic on $\widehat{\mathsf{C}_r}$ and let M_r be the maximum of |f| on C_r . Then $\forall n \in \mathbb{N}$:

*:
$$|f^{(n)}(w)| \leqslant \frac{n! M_r}{r^n}$$
.

Proof. By GCIF, and Triangle-Ineq-for-Integrals,

$$|f^{(n)}(w)| \leq \frac{n!}{2\pi} \int_{\mathbf{C}_r} \frac{|f(z)|}{|z - w|^{n+1}} |dz|$$

$$= \frac{n!}{2\pi \cdot r^{n+1}} \int_{\mathbf{C}_r} |f(z)| |dz|$$

$$\leq \frac{n! M_r}{2\pi \cdot r^{n+1}} \int_{\mathbf{C}_r} |dz|$$

$$= \frac{n! M_r}{2\pi \cdot r^{n+1}} \cdot 2\pi r.$$

15b: Liouville Thm. Suppose f is entire and is bnded, i.e, there exists a number $\beta \geqslant 0$ with $|f| \leqslant \beta$ on \mathbb{C} . Then f is constant.

Proof. ISTShow that $f' \equiv 0$. Applying Cauchy Inequality at n=1 gives

$$\forall w \in \mathbb{C}: |f'(w)| \leqslant \frac{\beta}{r},$$

for every r>0. Now send $r\nearrow\infty$.

15c: Gauss mean value thm (Gauss-MVT). "The arclength-average on a circle, of a holomorphic function, is its value at the center." Suppose f is holomorphic on region $\widehat{\mathsf{C}}$, where $\mathsf{C} := \mathrm{Sph}_r(\mathbf{p})$ is a circle. Then

$$\frac{1}{\operatorname{Len}(\mathsf{C})} \int_{\mathsf{C}} f(z) \cdot |\mathrm{d}z| = f(\mathbf{p}).$$

Proof. Parametrize C by $z(t) \coloneqq \mathbf{p} + r \mathsf{e}^{it}$; so z() maps $[0, 2\pi]$ onto C . Noting $z'(t) = ri\mathsf{e}^{it}$, our CIF implies that $f(\mathbf{p})$ equals

$$\frac{1}{2\pi i} \int_{\mathbf{C}} \frac{f(z)}{z - \mathbf{p}} \, \mathrm{d}z = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z(t))}{r \mathrm{e}^{it}} \cdot r i \mathrm{e}^{it} \, \mathrm{d}t$$

$$= \frac{1}{2\pi r} \int_{0}^{2\pi} f(z(t)) \cdot r \, \mathrm{d}t$$

$$= \frac{1}{\mathrm{Len}(\mathbf{C})} \int_{0}^{2\pi} f(z(t)) \cdot r \, \mathrm{d}t.$$

Since $|z'(t)| = |rie^{it}| = r$, this last integral equals $\int_{\mathbb{C}} f(z) \cdot |dz|$. Hence (*).

16a: Local-constancy lemma. Suppose f is holomorphic on an open ball B with center point \mathbf{p} . If number $|f(\mathbf{p})|$ dominates |f| on B, then f is constant on B. \Diamond

Proof. Courtesy Constancy thm (9a, P.5), ISTShow |f| constant on B. Fixing a circle $C := \mathrm{Sph}_r(\mathbf{p})$ in B, then, ISTShow:

*: The fnc |f|, on \mathbb{C} , equals number $|f(\mathbf{p})|$.

By hypothesis, difference $g(z) \coloneqq \left[|f(\mathbf{p})| - |f(z)| \right]$ is non-negative on \mathbb{C} , and is cts, since f is cts. We seek to show that g is identically-zero, which will follow from Non-neg Lemma (33, P.21) if we can establish that arclength-integral $\int_{\mathbb{C}} g(z) |\mathrm{d}z|$ is zero.

Integrating. Recall $f(\mathbf{p}) = \frac{1}{\mathrm{Len}(\mathsf{C})} \int_{\mathsf{C}} f(z) \cdot |\mathrm{d}z|$, courtesy the Gauss-MVT. Taking abs-values,

$$\begin{split} \big| f(\mathbf{p}) \big| &\leqslant \frac{1}{\mathrm{Len}(\mathbf{C})} \int_{\mathbf{C}} \big| f(z) \big| \cdot |\mathrm{d}z| \\ &\leqslant \frac{1}{\mathrm{Len}(\mathbf{C})} \int_{\mathbf{C}} \big| f(\mathbf{p}) \big| \cdot |\mathrm{d}z| \; = \; \big| f(\mathbf{p}) \big| \, . \end{split}$$

The ends are equal, so all three quantities are equal. In particular, the two integrals are equal, so their difference

$$\int_{\mathbf{C}} \left[|f(\mathbf{p})| - |f(z)| \right] \cdot |\mathrm{d}z|$$

is zero. And that is the arclength-integral of g.

16b: Maximum-modulus principle (MaxMP). Suppose holomorphic f on domain D is such that |f| attains a maximum on D. Then f is constant on D. \diamondsuit

Proof. We use the "overlapping-ball argument".

Suppose $\mathbf{p} \in D$ is a point where |f| attains a maximum on D. Fixing an arbitrary point $q \in D$, we seek to show that $f(q) = f(\mathbf{p})$.

Fix a polygonal path $\mathbb{C}\subset D$ going from \mathbf{p} to q. Since D is open, and \mathbb{C} is closed and bounded, there exists [this uses the completeness property of \mathbb{R}] a sufficiently small $\varepsilon>0$ so that for every point $w\in\mathbb{C}$, ball $\mathrm{Bal}_{2\varepsilon}(w)$ lies in D. Pick a sequence of points

$$w_0 \coloneqq \mathbf{p}, \ w_1, \ w_2, \ldots, \ w_{N-1}, \ w_N \coloneqq q$$

on C, so that each distance $|w_n - w_{n-1}| < \varepsilon$. Thus each ball $B_n := \text{Bal}_{2\varepsilon}(w_n)$ owns the next point, w_{n+1} .

Applying Local-constancy, (16a), to B_0 , says f is constant on B_0 . So $f(w_1) = f(w_0) \xrightarrow{\text{note}} f(\mathbf{p})$. Thus $|f(w_1)|$ dominates |f| on D, hence on B_1 . We can now invoke Local-constancy on B_1 , to conclude that $f(w_2) = f(\mathbf{p})$, since $w_2 \in B_1$. Iterating, we eventually show that $f(q) \xrightarrow{\text{note}} f(w_N) = f(\mathbf{p})$.

16c: MaxMP corollary. Suppose f is cts on a closed-bounded non-empty region $R \subset \mathbb{C}$ which is path-connected. If f is holomorphic and non-constant on the interior of R then:

Fnc |f| attains a maximum at at-least-one point of ∂R , and never on the interior of R.

16d: Minimum-modulus principle (MinMP). Suppose h is non-constant and holomorphic on domain D. If h is never zero on D, then |h| does not attain a minimum on D. Proof. Apply MaxMP to $f := \frac{1}{h}$.

16e: Fund. thm of Algebra. Every non-constant polynomial h has a \mathbb{C} -root. (Consequently, h splits i.e, a monic h factors completely as $h(z) = [z - \mathbf{r}_1] \cdot \ldots \cdot [z - \mathbf{r}_N]$.)

Proof. WLOG h is monic. Since h is non-constant, its high-order term has form z^N for some $N \ge 1$. As $|z| \nearrow \infty$, this term dominates all the other terms in h. So $|h(z)| \to \infty$ as $|z| \nearrow \infty$. Hence there is a sufficiently large closed ball $B := \text{CldBal}_r(0)$ so that:

*: There is strict inequality |h(z)| > |h(0)|, for each $z \in \mathbb{C} \setminus B$.

Now, FTSOC suppose h has no root, i.e, |h| is never zero. Fix a B satisfying (*). Since B is closed-bounded and |h| is cts, our |h| attains a minimum on B, hence, courtesy (*), on all of \mathbb{C} . But this contradicts the Minimum-modulus principle.

16f: Cone-boundedness Lemma. For a holomorphic f on the unit ball $B := Bal_1(0)$, suppose

$$f(0) = 0$$
 and $\forall z \in B: |f(z)| \leq 1$.

Then

†:
$$|f'(0)| \leq 1$$
. On B, furthermore: $|f(z)| \leq |z|$.

Conversely, if |f'(0)| = 1 or there exists a non-zero $w \in B$ with |f(w)| = |w|, then f is linear. I.e, f has form $f(z) = M \cdot z$, for some $M \in \mathbb{C}$ with |M| = 1. \diamondsuit

Proof. It follows from later work [Taylor's thm and friends] that $g(z) := \begin{cases} f(z)/z & \text{, if } z \neq 0 \\ f'(0) & \text{, if } z = 0 \end{cases}$

is holomorphic on B. On circle $C_r := \mathrm{Sph}_r(0)$, note that |g| is (upper-)bnded by $\frac{1}{r}$, since |f| is bnded by 1.

Obtaining (†). Fix $w \in B$ and radius with $|w| \le r < 1$. Our g is holomorphic on $\widehat{\mathsf{C}}_r$. Applying MaxMP, (16b), to g on $\widehat{\mathsf{C}}_r$ shows that $|g(w)| \le \frac{1}{r}$. Sending $r \nearrow 1$ implies that $|g(w)| \le 1$. At w = 0 this says $|f'(0)| \le 1$, and at non-zero w it asserts $|f(w)| \le |w|$.

The converse. A non-zero w with |f(w)| = |w| says |g(w)|=1. And |f'(0)|=1 is equiv to |g(0)|=1. If either happens, then |g| attains a maximum at an interior point of B, so MaxMP implies that g is some constant; say, M, of abs.value 1. Thus $f(z) = M \cdot z$.

 \Diamond

Taylor's thm

The " K^{th} Taylor polynomial for f, centered at Q" is

17:
$$\mathbf{T}_{f,Q,K}(z) := \sum_{n=0}^{K-1} c_n \cdot [z-Q]^n$$
, where $c_n := \frac{f^{(n)}(Q)}{n!}$.

The K^{th} remainder term is defined by

$$f(z) = \mathbf{T}_{f,Q,K}(z) + \mathbf{R}_{f,Q,K}(z).$$

Sometimes the f, Q or z is dropped from the notation, when it is understood.

18a: Taylor-series thm. Suppose f is holomorphic on open ball B centered at $Q \in \mathbb{C}$. Define coefficient

$$c_n := \frac{f^{(n)}(Q)}{n!}.$$

Then power series

$$\widetilde{f}(z) := \sum_{n=0}^{\infty} c_n \cdot [z - Q]^n$$

converges to f(z) on B, i.e $\widetilde{f} \downarrow_B = f$.

Prelim. WLOG Q = 0. So $c_n = \frac{f^{(n)}(0)}{n!}$, and the K^{th} Taylor-polynomial is

$$\mathbf{T}_K(z) := \sum_{n=0}^{K-1} c_n \cdot z^n.$$

Fixing a point $\mathbf{p} \in B$, our goal is to establish

$$\sum_{n=0}^{\infty} c_n \cdot \mathbf{p}^n \quad \text{equals} \quad f(\mathbf{p}) \,.$$

To accomplish this, we'll show that the K^{th} remainder term,

$$\dagger$$
: $\mathbf{R}_K \coloneqq f(\mathbf{p}) - \mathbf{T}_K(\mathbf{p})$

goes to zero as $K \nearrow \infty$. The method is to integrate around a circle $\mathsf{C} \coloneqq \operatorname{Sph}_r(0) \subset B$ that encloses \mathbf{p} ; so $r > |\mathbf{p}|$. Below: Let $\int \operatorname{mean} \ \int_{\mathsf{C}}$.

For a complex $w\neq 1$ and posint K, easily (exercise)

*:
$$\frac{1}{1-w} = \frac{w^K}{1-w} + \sum_{n=0}^{K-1} w^n$$
.

Proof. CIF says $f(\mathbf{p})$ equals $\frac{1}{2\pi i} \int \frac{f(z)}{z-\mathbf{p}} dz$. For a $z \in \mathbb{C}$, ratio $w := \mathbf{p}/z$ isn't 1. So (*) applies, giving

$$\frac{1}{z-\mathbf{p}} = \frac{1}{z} \cdot \frac{1}{1-[\mathbf{p}/z]}$$

$$\xrightarrow{\underline{\text{by (*)}}} \frac{1}{z} \cdot \frac{[\mathbf{p}/z]^K}{1-[\mathbf{p}/z]} + \frac{1}{z} \cdot \sum_{n=0}^{K-1} [\mathbf{p}/z]^n$$

$$= \frac{\mathbf{p}^K}{[z-\mathbf{p}] \cdot z^K} + \sum_{n=0}^{K-1} \mathbf{p}^n \frac{1}{z^{n+1}}.$$

Multiplying by f(z), then integrating, says $f(\mathbf{p})$ equals

$$\mathbf{p}^{K} \cdot \frac{1}{2\pi i} \int \frac{f(z)}{[z-\mathbf{p}]z^{K}} dz + \sum_{n=0}^{K-1} \mathbf{p}^{n} \cdot \frac{1}{2\pi i} \int \frac{f(z)}{z^{n+1}} dz.$$

But GCIF says $\frac{1}{2\pi i} \int \frac{f(z)}{z^{n+1}} dz = \frac{f^{(n)}(0)}{n!}$, which is c_n . So the righthand sum is simply $\mathbf{T}_K(\mathbf{p})$. This establishes that

$$\ddagger: \qquad \mathbf{R}_K = \mathbf{p}^K \cdot \frac{1}{2\pi i} \int \frac{f(z)}{[z-\mathbf{p}] \cdot z^K} \, \mathrm{d}z.$$

Upper-bnding $|\mathbf{R}_K|$. Recall z is on \mathbb{C} , a circle of radius $r > |\mathbf{p}|$. As $|z - \mathbf{p}| > |z| - |\mathbf{p}| = r - |\mathbf{p}|$, we have that $\frac{1}{|z - \mathbf{p}|} < \frac{1}{r - |\mathbf{p}|}$. Letting M be the maximum of |f| on \mathbb{C} , then,

$$\left| \int \frac{f(z)}{[z - \mathbf{p}] \cdot z^K} \, dz \right| \leq \int \frac{M}{[r - |\mathbf{p}|] \cdot r^K} |dz|$$

$$= \frac{M \cdot 2\pi r}{[r - |\mathbf{p}|] \cdot r^K}.$$

Happy, (‡) hands us

$$|\mathbf{R}_K| \leqslant \frac{M \cdot r}{r - |\mathbf{p}|} \cdot \left[\frac{|\mathbf{p}|}{r}\right]^K.$$

Since ratio $|\mathbf{p}|/r < 1$, the RhS $\searrow 0$ as $K \nearrow \infty$.

18b: Taylor-remainder coro. Suppose h is holomorphic on \hat{C} , where C is a circle centered at some point Q.

Consider the Taylor decomposition

$$h(p) = \mathbf{T}_{h,Q,K}(p) + \mathbf{R}_{h,Q,K}(p)$$

at a point $p \in C$. Then the (‡)-formula for the remainder term, is

$$\mathbf{R}_{h,Q,K}(p) = [p-Q]^K \cdot \mathbf{h}_K(p), \quad \text{where}$$

$$\mathbf{h}_K(p) := \frac{1}{2\pi i} \int_{\mathbf{C}} \frac{h(\zeta) \, \mathrm{d}\zeta}{[\zeta-p] \cdot [\zeta-Q]^K}.$$

Moreover, this $\mathbf{h}_K()$ is holomorphic [since (*) satisfies the conditions for diff'ing under the integral sign w.r.t p].

Remark. The above shows that holomorphic fncs are analytic [locally have power-series expansions], and termby-term differentiation shows that analytic fncs are holomorphic. Unfinished: as of 9May2017

18c: Remark. Using the above notation,

$$h(z) = \left[\sum_{n=0}^{K-1} [z - Q]^n \cdot \frac{f^{(n)}(Q)}{n!} \right] + [z - Q]^K \cdot \mathbf{h}_K(z). \quad \text{So } a_6 = \left[\frac{1}{1} \cdot \frac{1}{120} \right] - \left[\frac{1}{6} \cdot \frac{1}{6} \right] + \left[\frac{1}{120} \cdot \frac{1}{1} \right] = \frac{1}{6} \cdot \left[\frac{1}{10} - \frac{1}{6} \right] = \frac{-1}{90}. \square$$

Now suppose that some-order h-derivative at Q is not zero. Let K now be the smallest index such that $h^{(K)}(Q) \neq 0$. Unfinished: as of 9May2017

19a: Defn. For an analytic $f: D^{\text{open}} \to \mathbb{C}$, in a general sense each point $Q \in \partial(D)$ is a **singular point**; that is, each nebd of Q has a point of analyticity of f [see P.74]. A Q is a **removable singularity** if f can be defined at Q so that now, f is analytic in a nbhd of Q.

A singularity Q is an **isolated singularity** if f is analytic in some punctured-ball $PBal_r(Q)$.

An isolated singularity Q is a "pole of f" if $\lim_{z\to Q} |f(z)| = \infty$; otherwise, Q is an **essential sin**gularity of f.

The "residue of f at an isolated singularity Q" is the unique complex number \mathcal{R} such that function

$$z \mapsto f(z) - \frac{\mathcal{R}}{z-Q}$$

has an antiderivative in some $PBal_r(Q)$ with r > 0.

At an isolated singularity Q, suppose f is analytic on $PBal_r(Q)$, where r>0. The Laurent expansion of f has form

$$f(z) = \left[\sum_{k=1}^{\infty} \frac{b_k}{[z-Q]^k}\right] + \left[\sum_{n=0}^{\infty} a_n \cdot [z-Q]^n\right]$$

where $RoC(\vec{\mathbf{a}}) \geqslant r$ and $RoC(\vec{\mathbf{b}}) = \infty$. Consequently $\operatorname{Res}(f,Q) = b_1.$

19b: Residue Thm. For a SCC C, suppose f is analytic on \hat{C} except at finitely many points Q_1, \ldots, Q_L , each in C. Then

$$\int_{\mathsf{C}} f(z) \, \mathrm{d}z = 2\pi i \cdot \left[\sum_{\ell=1}^{L} \mathrm{Res}(f, Q_{\ell}) \right].$$

19c: Residue computation. Let $f(z) := \sin(z) \cdot e^{z}/z^{7}$. What is $\mathcal{R} := \text{Res}(f, 0)$?

Writing $g(z) := \sin(z) \cdot e^z$ as PS $\sum_{n=0}^{\infty} a_n z^n$, our Res(f,0) is a_6 . Recall

$$\sin(z) = \frac{z}{1} - \frac{z^3}{6} + \frac{z^5}{120} - \dots$$
 and $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$.

So
$$a_6 = \left[\frac{1}{1} \cdot \frac{1}{120}\right] - \left[\frac{1}{6} \cdot \frac{1}{6}\right] + \left[\frac{1}{120} \cdot \frac{1}{1}\right] = \frac{1}{6} \cdot \left[\frac{1}{10} - \frac{1}{6}\right] = \frac{-1}{90}$$
.

20: Standing notation. For r>0, let L_r be the line segment from -r to +r, and let A_r be the semicircular arc from +r through ir to -r. Glued together they make SCC, D_r , which looks like a \square , a horizontal capital D. Let $U := \mathrm{Sph}_1(0)$ be the unit circle.

CoV of Definite-integral to contour-integral, 1

To compute

21a:
$$W := \int_0^{2\pi} \frac{1}{4 + \cos(\theta)} \, \mathrm{d}\theta,$$

let's use CoV $z := e^{i\theta}$. So $\frac{dz}{d\theta} = ie^{i\theta} = iz$. Thus

$$d\theta = \frac{dz}{iz}$$
 and $\cos(\theta) = \frac{1}{2}[z + \frac{1}{z}] = \frac{z^2 + 1}{2z}$.

So,

$$W = \int_{\mathbf{U}} \frac{1}{\left[4 + \frac{z^2 + 1}{2z}\right]} \frac{\mathrm{d}z}{iz} = \frac{1}{i} \int_{\mathbf{U}} \frac{1}{\left[4 + \frac{z^2 + 1}{2z}\right]z} \,\mathrm{d}z.$$

The integrand's denominator is $4z + \frac{z^2+1}{2} = \frac{q(z)}{2}$, where $q(z) := z^2 + 8z + 1$. Hence $W = \frac{2}{i} \cdot J$, where

$$J := \int_{\mathbf{U}} \frac{1}{q(z)} \, \mathrm{d}z.$$

Poles. Note Discr $(q) = 8^2 - 4 \cdot 1 \cdot 1 = 2^2 [4^2 - 1] = 2^2 \cdot 15$ So g factors as $g(z) = [z - \alpha][z - \beta]$, where

$$\alpha := -4 + \sqrt{15}$$
 and $\beta := -4 - \sqrt{15}$.

Easily, α is enclosed by U, whereas β is outside of U. Letting $h(z) := 1/[z-\beta]$, our J equals

$$\int_{\mathbf{U}} \frac{h(z)}{z - \alpha} \, \mathrm{d}z \quad \xrightarrow{\text{by CIF}} \quad 2\pi \mathbf{i} \cdot h(\alpha) = \frac{\pi \mathbf{i}}{\sqrt{15}} \,. \quad \text{Hence}$$

$$21a': \qquad W = \frac{2}{\mathbf{i}} \cdot \frac{\pi \mathbf{i}}{\sqrt{15}} = \frac{2\pi}{\sqrt{15}} \,.$$

Extending. For M > 1, define

21b:
$$W_M := \int_0^{2\pi} \frac{1}{M + \cos(\theta)} d\theta.$$

Our CoV $z:=\mathrm{e}^{i\theta}$ says that $\overline{W_M=\frac{2}{i}\cdot J}$ where $J:=\int_{\mathsf{U}}\frac{1}{q(z)}\,\mathrm{d}z$, for quadratic $q(z):=z^2+2Mz+1$.

As before, $\operatorname{Discr}(q) = 2^2[M^2 - 1]$. Hence g(z) equals $[z - \alpha][z - \beta]$ where

$$\alpha := -M + \sqrt{M^2 - 1}$$
 and $\beta := -M - \sqrt{M^2 - 1}$

Since M>1, our α is enclosed by U, whereas β is outside. With $H(z) := 1/[z-\beta]$, then, J equals

$$\int_{\mathsf{U}} \frac{H(z)}{z - \alpha} \, \mathrm{d}z \stackrel{\text{by CIF}}{=} 2\pi i \cdot H(\alpha) = \frac{\pi i}{\sqrt{M^2 - 1}} \,. \quad \text{Thus}$$

$$21b': \qquad W_M = \frac{2\pi}{\sqrt{M^2 - 1}} \,.$$

General method. The CoV $z := e^{i\theta}$ transforms $[0, 2\pi]$ into U, the unit-circle. Moreover, for $k \in \mathbb{Z}$:

21c:
$$d\theta = \frac{dz}{iz},$$

$$\cos(\theta) = \frac{1}{2}[z + \frac{1}{z}] = \frac{z^2 + 1}{2z}, \cos(k\theta) = \frac{z^{2k} + 1}{2z^k},$$

$$\sin(\theta) = \frac{1}{2i}[z - \frac{1}{z}] = \frac{z^2 - 1}{2iz}, \sin(k\theta) = \frac{z^{2k} - 1}{2iz^k}.$$

Thus a $\int_0^{2\pi}$ integral of a rational function of $\cos(k\theta)$ and $\sin(\ell\theta)$ is transformed, by the CoV, into a \int_{U} integral of a rational fnc of z. Factoring the denominator gives the poles of the integrand, so we can apply CIF, equivalently, the Residue thm.

As an example, consider $W := \int_0^{2\pi} \frac{1}{2+\sin(\theta)} d\theta$. Our CoV (21c) says that

$$W \; = \; \int_{\sf U} \frac{1}{2 \, + \, \frac{z^2 - 1}{2 \, i z}} \cdot \frac{\, \mathrm{d}z}{i z} \; \xrightarrow{\, \mathrm{note} \, } \; \int_{\sf U} \, \frac{2}{q(z)} \, \mathrm{d}z \, ,$$

where $q(z) := z^2 + 4iz - 1$. Thus

$$Discr(q) = [4i]^2 - 4 \cdot 1 \cdot [-1] = 2^2 \cdot [-3]$$
. So,

$$\text{Roots}(q) = \frac{1}{2}[-4i \pm 2i\sqrt{3}] = [-2 \pm \sqrt{3}]i$$
.

Consequently $q(z) = [z - \alpha] \cdot [z - \beta]$, where

$$\boldsymbol{lpha} \coloneqq [-2 + \sqrt{3}] \boldsymbol{i}$$
 and $\boldsymbol{eta} \coloneqq [-2 - \sqrt{3}] \boldsymbol{i}$.

Easily, β is outside U and α is inside, since $[-1 < \alpha] \Leftrightarrow [1 < \sqrt{3}]$, which holds. Hence W equals

$$\int_{\mathsf{U}} \frac{2/[z-\beta]}{z-\alpha} \,\mathrm{d}z \ \stackrel{\mathsf{CIF}}{=} \ 2\pi \, \boldsymbol{i} \cdot \frac{2}{\alpha-\beta} \ = \ 2\pi \, \boldsymbol{i} \cdot \frac{2}{2\boldsymbol{i}\sqrt{3}} \,.$$

21d: *I.e*,
$$\int_0^{2\pi} \frac{1}{2 + \sin(\theta)} d\theta = \frac{2\pi}{\sqrt{3}}$$
.

Higher-order poles. The preceding examples had an order-1 pole, so let's go up. For natnum N, define

21e:

$$J_N := \int_0^{2\pi} \cos(\theta)^N d\theta.$$

Of course, the symmetry of $\cos()$ forces $J_{\rm Odd}$ to be zero, but let's apply The Method, and see what transpires. $^{\heartsuit 4}$

Our CoV says J_N equals

$$\int_{\mathbf{U}} \left\lfloor \frac{z^2 + 1}{2z} \right\rfloor^N \cdot \frac{\mathrm{d}z}{iz} = \frac{1}{i \cdot 2^N} \int_{\mathbf{U}} \frac{[z^2 + 1]^N}{z^{N+1}} \, \mathrm{d}z.$$

With $f(z) := [z^2 + 1]^N$, let C denote the coefficient of z^N in f(z). Then $f^{(N)}(0) = [N! \cdot C]$. Our GCIF says $\int_{\mathsf{U}} \frac{[z^2 + 1]^N}{z^{N+1}} \, \mathrm{d}z$ equals $\frac{2\pi i}{N!} \cdot f^{(N)}(0) \stackrel{\text{note}}{=} 2\pi i \cdot C$. Thus

$$J_N = \frac{2\pi}{2^N} \cdot C.$$

When N odd then C=0, giving $J_{\text{Odd}}=0$, as expected.

When N = 2H is even: The coefficient of z^{2H} in polynomial $f(z) = [z^2 + 1]^{2H}$ is binomial-coeff $\binom{2H}{H}$. So for $H = 0, 1, 2, \ldots$,

$$21e'$$
: $J_{2H} = \frac{2\pi}{2^{2H}} \cdot {2H \choose H} = 2\pi \cdot {2H \choose H}$.

This multiplier, $\binom{2H}{H}/2^{2H}$, we recognize as: The Probability, in 2H flips of a fair coin, of getting exactly H heads. [That probability indeed decreases monotonically to zero as $H\nearrow\infty$.]

We get the curiosity that the average value of the integral, $\frac{1}{2\pi}\int_0^{2\pi}\cos(\theta)^N d\theta$, is a probability. Hmm...

Definite-integral from limit of contour-int., 2

For posint N, we seek

22a:
$$V_N := \int_{-\infty}^{\infty} \frac{1}{x^N + 1} dx$$

when N is <u>even</u>. [When N odd, then the integrand has a pole at x = -1.] Moreover, does this limit exist in \mathbb{R} ?:

22b:
$$\Lambda := \lim_{\substack{N \to \infty \\ N \text{ even}}} V_N.$$

The Trick. Note that

$$\left| \int_{\mathsf{A}_r} \frac{1}{z^N + 1} \, \mathrm{d}z \right| \le \int_{\mathsf{A}_r} \frac{1}{r^N - 1} \, |\mathrm{d}z| = \frac{\pi r}{r^N - 1},$$

which goes to zero as $r \nearrow \infty$, since N > 1. Thus

$$V_N \, \stackrel{\mathrm{def}}{=\!\!\!=} \, \lim_{r \nearrow \infty} \int_{\mathsf{L}_r} \frac{1}{z^N + 1} \, \mathrm{d}z \, = \, \lim_{r \nearrow \infty} \int_{\mathsf{D}_r} \frac{1}{z^N + 1} \, \mathrm{d}z \, .$$

The only zeros of $z^N + 1$ lie on the unit circle, and so all r > 1 yield the *same value* for the righthand integral. Thus its value is V_N , i.e

$$V_N = \int_{\mathsf{D}_r} \frac{1}{z^N + 1} \, \mathrm{d}z$$
, for each $r > 1$.

Henceforth, D denotes one of these contours; say, D_2 for specificity.

The poles. Let $\omega := \omega_N := \operatorname{cis}(\pi/N)$. The N many N^{th} -roots of $\neg 1$ are $\omega, \omega^3, \omega^5, \dots, \omega^{2N-1}$. Those that lie in the upper half-plane, i.e, those enclosed by D , are in list

$$\dagger: \quad \mathcal{L} = \mathcal{L}_N := \{\omega, \omega^3, \omega^5, \dots, \omega^{N-3}, \omega^{N-1}\},\,$$

recalling that N is even. These are the poles of $\frac{1}{z^N+1}$ that are enclosed by D.

Fix a pole **p** in this list and define

$$f_{\mathbf{p}}(z) \coloneqq \frac{z - \mathbf{p}}{z^N + 1}.$$

The contour integral on a contour C that goes around only pole \mathbf{p} is

$$\int_{\mathcal{C}} \frac{f_{\mathbf{p}}(z)}{z - \mathbf{p}} \, \mathrm{d}z,$$

which, by CIF, equals $2\pi i \cdot f_{\mathbf{p}}(\mathbf{p})$.

For N=2H even, we must have $J_N \searrow 0$ monotonically as $N \nearrow \infty$, since $\cos(\theta)^N$ goes to monotonically to zero, except when θ is a π -multiple.

Computing $f_{\mathbf{p}}(\mathbf{p})$. We could factor $z^N + 1$, but simpler is to use l'Hôpital's rule. Our $f_{\mathbf{p}}(z)$ has a removable discty at $z=\mathbf{p}$, so

$$f_{\mathbf{p}}(\mathbf{p}) = \lim_{z \to \mathbf{p}} \frac{z - \mathbf{p}}{z^N + 1} \stackrel{\text{l'H}}{=} \lim_{z \to \mathbf{p}} \frac{1}{Nz^{N-1}} = \frac{1}{N\mathbf{p}^{N-1}}.$$

As
$$\mathbf{p}^N = -1$$
, our $\frac{1}{\mathbf{p}^{N-1}} = -\mathbf{p}$, thus $f_{\mathbf{p}}(\mathbf{p}) = -\mathbf{p}/N$.

Adding over the poles. We've now shown that

$$V_N = \frac{-2\pi i}{N} \cdot \sum_{\mathbf{p} \in \mathcal{L}} \mathbf{p} = \frac{2\pi}{N i} \cdot \sum_{\mathbf{p} \in \mathcal{L}} \mathbf{p}$$
.

Writing our even N as N=2H [H for Half] gives the delightfully cheerful formula

$$\ddagger: V_N = \frac{\pi}{Hi} \cdot \sum (\mathcal{L}_N).$$

Interlude. Using Actual Numbers...

$$\begin{array}{lll} V_2 \; = \; \frac{\pi}{1 \cdot \pmb{i}} \cdot \pmb{i} \; = \; \pi \; . \\ \\ V_4 \; = \; \frac{\pi}{2 \pmb{i}} \cdot \big[\frac{i-1}{\sqrt{2}} \; + \; \frac{i+1}{\sqrt{2}} \big] \; = \; \frac{\pi}{2 \pmb{i}} \cdot \frac{2 \pmb{i}}{\sqrt{2}} \; = \; \pi/\sqrt{2} \; . \\ \\ V_6 \; = \; \frac{\pi}{3 \pmb{i}} \cdot \big[\frac{i-\sqrt{3}}{2} \; + \; \pmb{i} \; + \; \frac{i+\sqrt{3}}{2} \big] \; = \; \frac{\pi}{3 \pmb{i}} \cdot 2 \pmb{i} \; = \; \frac{2}{3} \pi \; . \end{array}$$

Computing $\sum (\mathcal{L}_N)$. The poles of (†) can be paired, allowing us to cancel out the cosines and express this sum ITOf sines. [Discussed in class. In particular, $\Lambda = \left[\int_0^{\pi} \sin i \, dx\right] = 2$.]

Alternatively, we can sum a finite geometric series. Note that $\frac{1}{\omega} \cdot \mathcal{L} = \{1, \omega^2, \omega^4, \dots, \omega^{N-4}, \omega^{N-2}\}$. Thus

$$\sum \left(\frac{1}{\omega} \cdot \mathcal{L}\right) \; = \; \sum_{j=0}^{H-1} \, [\omega^2]^j \; = \; \frac{1 - [\omega^2]^H}{1 - \omega^2} \, .$$

Recall that $\omega^{2H} = \omega^N = -1$, so

$$\sum (\mathcal{L}) \; = \; \omega \cdot \frac{2}{1 \, - \, \omega^2} \; = \; 2 \cdot \frac{\omega}{1 \, - \, \omega^2} \, . \label{eq:lambda}$$

The reciprocal of $\frac{\omega}{1-\omega^2}$ is $\frac{1-\omega^2}{\omega} = \frac{1}{\omega} - \frac{\omega}{1} = \overline{\omega} - \omega$; this last, because ω is on the unit-circle. And $\overline{\omega} - \omega$ equals $-2i \cdot \text{Im}(\omega)$, i.e, $2 \cdot \text{Im}(\omega)/i$. We get the nifty

$$\Sigma(\mathcal{L}_N) = i/\mathrm{Im}(\omega_N) = i/\sin(rac{\pi}{N})$$
, thus $22a'$: $V_N = 2 \cdot rac{\pi/N}{\sin(\pi/N)}$.

Easily, for $\theta \leqslant \frac{\pi}{2}$: As $\theta \searrow 0$, ratio $\frac{\theta}{\sin(\theta)}$ strictly decreases to 1. This proves that $V_2 > V_4 > V_6 > \dots$ and that $V_N \searrow 2$.

Redoing, $V_6 = 2 \cdot \frac{\pi/6}{1/2} = \frac{2}{3}\pi$, as before. To compute V_8 , the half-angle (...that $\sin(\theta)^2 = \frac{1}{2}[1 - \cos(2\theta)]$) formula tells us that $\sin(\frac{\pi}{8}) = \frac{\sqrt{2-\sqrt{2}}}{2}$. Thus

$$V_8 = \frac{\pi}{2 \cdot \sqrt{2 - \sqrt{2}}}.$$

This extended example hints at the power of the residue-calculus. In particular, it handles all...

... Integrals $\int_{-\infty}^{\infty} \frac{f(x)}{q(x)} dx$ with f and q polynomials with $\text{Deg}(q) - \text{Deg}(f) \ge 2$, and q having no real roots.

Example: Squared outside. Contemplate

$$22c: Z := \int_{-\infty}^{\infty} \frac{1}{[x^2+1]^2} \, \mathrm{d}x.$$

As usual, the integral of $f(z) := \frac{1}{[z^2+1]^2}$ over arc A_r goes to zero as $r \nearrow \infty$, so $Z = \int_{\mathbb{D}} f$, where $\mathbb{D} := \mathbb{D}_2$. As i is the only upper half-plane singularity of f, we have

$$\int_{\mathsf{D}} f = \int_{\mathsf{D}} \frac{g(z)}{[z - \mathbf{i}]^2} \, \mathrm{d}z, \text{ where } g(z) := [z + \mathbf{i}]^{-2}.$$

Thus $\operatorname{Res}(f, i) = \frac{g'(i)}{1!} = -2[z + i]^{-3} \rfloor_{z=i} = \frac{-2}{2^3 i^3} = \frac{1}{4i}$. Hence,

22c':
$$\int_{-\infty}^{\infty} \frac{1}{[x^2+1]^2} dx = 2\pi i \cdot \frac{1}{4i} = \frac{\pi}{2}.$$

Generalizing. For K a natrum, integral

22d:
$$Z_K := \int_{-\infty}^{\infty} \frac{1}{[x^2 + 1]^{K+1}} dx$$

equals $\int_{\mathsf{D}} \frac{g(z)}{[z-i]^{K+1}} \, \mathrm{d}z$, where $g(z) \coloneqq [z+i]^{-[K+1]}$. Now $\mathrm{Res}(f, i) = \frac{g^{(K)}(i)}{K!}$. Doing the arithmetic yields

22d':
$$\int_{-\infty}^{\infty} \frac{1}{[x^2+1]^{K+1}} \, \mathrm{d}x = \pi \cdot \frac{\binom{2K}{K}}{2^{2K}}.$$

This looks a lot like (21e'). Again, Hmm...

Jordan's Lemma

We need an estimate to show that certain integrals are bounded on our A_r arcs. But first...

23a: Proposition. Fix T > 0. Then

$$\int_0^{\pi} \left| \exp(iT \cdot \operatorname{cis}(\theta)) \right| d\theta \leqslant \frac{\pi}{T}.$$

Proof. Since $\sin()$ is convex-down on $[0, \frac{\pi}{2}]$, its graph lies above the line-segment connecting (0,0) to $(\frac{\pi}{2},1)$. Thus

$$\dagger: \quad \forall \theta \in [0, \frac{\pi}{2}]: \quad \sin(\theta) \geqslant \frac{\theta}{\pi/2}, \text{ so } -\sin(\theta) \leqslant \frac{-2}{\pi} \cdot \theta.$$

For S,B > 0, note $\int_0^B e^{-S\theta} d\theta = \frac{1}{S}[1 - e^{-SB}]$. Hence

Estimate. Since $iT \cdot \operatorname{cis}(\theta) = iT \cos(\theta) - T \sin(\theta)$ and T is real, we have that

$$|\exp(iT\cdot\operatorname{cis}(\theta))| = \exp(-T\sin(\theta)).$$

On interval $[0, \pi]$, fnc sin() is symmetric about $\frac{\pi}{2}$. Thus

$$\int_0^{\pi} \left| \exp(\mathbf{i} T \cdot \operatorname{cis}(\theta)) \right| d\theta = 2 \int_0^{\pi/2} \exp(-T \sin(\theta)) d\theta$$

$$\leq 2 \int_0^{\pi/2} \exp\left(\frac{-2T}{\pi}\theta\right) d\theta,$$

courtesy (†) and that T>0, as well as that $\exp()$ is order-preserving on \mathbb{R} .

Applying (‡) with $B := \pi/2$ and $S := \frac{2T}{\pi}$ now yields that

$$\int_0^{\boldsymbol{\pi}} \left| \exp(\boldsymbol{i} \, T \cdot \mathrm{cis}(\boldsymbol{\theta})) \right| \mathrm{d}\boldsymbol{\theta} \, \leqslant \, 2 \Big/ \frac{2T}{\boldsymbol{\pi}} \, \stackrel{\text{note}}{=} \, \frac{\boldsymbol{\pi}}{T} \, . \qquad \blacklozenge$$

23b: Jordan Lemma. Fix P > 0 and a fnc g() which is continuous on the upper half-plane in \mathbb{C} . For each r>0, let M_r be the maximum of |g| on A_r . Then every radius r>0 satisfies

$$\mathbf{Y}: \qquad \left| \int_{\mathbf{A}_r} \mathbf{e}^{iPz} \cdot g(z) \, dz \right| \leqslant \frac{\pi}{P} \cdot M_r.$$

Pf. Note LhS(¥) $\leq \int_{\mathsf{A}_r} |\mathsf{e}^{iPz}| \cdot M_r \, |\mathrm{d}z|$. So ISTShow that $\int_{\mathsf{A}_r} |\mathsf{e}^{iPz}| \, |\mathrm{d}z| \, \stackrel{?}{\leq} \, \frac{\pi}{D}.$

CoV $z = re^{i\theta} \stackrel{\text{note}}{===} r \operatorname{cis}(\theta)$ has $\frac{dz}{d\theta} = ire^{i\theta}$. Thus,

$$\int_{\mathbf{A}_r} |e^{iPz}| |dz| = \int_0^{\pi} |\exp(iPr \cdot \operatorname{cis}(\theta))| \cdot |ire^{i\theta}| d\theta
= r \cdot \int_0^{\pi} |\exp(iPr \cdot \operatorname{cis}(\theta))| d\theta \leqslant r \cdot \frac{\pi}{Pr}.$$

This last inequality is courtesy Proposition 23a applied with $T := P \cdot r$.

Appl. of Jordan Lemma. Consider

23c:
$$Y := \int_{-\infty}^{\infty} \frac{x \cdot \sin(x)}{x^2 + 1} \, \mathrm{d}x$$
.

The difference in the degrees of the denominator poly, $x^2 + 1$, and numer poly, x, is only 1. The positive and negative parts of the integrand each have infinite integral, hence $\int_{-\infty}^{\infty} \left| \frac{x \cdot \sin(x)}{x^2 + 1} \right| dx = \infty$; so the oscillations of $\sin()$ are crucial for convergence of (23c).

Fixing an r > 1, we seek to compute

$$Y_r := \int_{-r}^r \frac{x \cdot \sin(x)}{x^2 + 1} \, \mathrm{d}x.$$

Note $\int_{-r}^{r} \frac{x \cdot \cos(x)}{x^2 + 1} dx$ is zero, since $\cos()$ is an even fnc. Thus Y_r equals

$$\int_{-r}^{r} \frac{x \cdot \left[\sin(x) - i\cos(x)\right]}{x^2 + 1} dx = -i \int_{-r}^{r} \frac{x \cdot e^{ix}}{x^2 + 1} dx.$$

Thus we'll have

*:
$$Y = -i \lim_{r \nearrow \infty} \int_{\mathbf{D}_r} \frac{z \cdot e^{iz}}{z^2 + 1} \, \mathrm{d}z$$

if we can show that the contribution on arc A_r goes to zero.

Applying Jordan's Lemma (23b) with $g(z) := \frac{z}{z^2+1}$ and P=1, gives

$$\left| \int_{\Delta_{-}} \frac{z \cdot e^{iz}}{z^2 + 1} \, \mathrm{d}z \right| \leq \pi \cdot \frac{r}{r^2 - 1}.$$

This goes to zero as $r \nearrow \infty$. So Y equals $-i \int_{\mathsf{D}} \frac{z \cdot \mathsf{e}^{iz}}{z^2 + 1} \, \mathrm{d}z$ where D is, say, D_2 , since D_2 encloses all the upper half-plane singularities of the integrand.

Applying CIF to $f(z) := z \cdot e^{iz}/[z+i]$ gives

$$\int_{\mathsf{D}} \frac{f(z)}{z-i} \, \mathrm{d}z \ = \ 2 \pi \, \boldsymbol{i} \cdot f(\boldsymbol{i}) \ = \ 2 \pi \, \boldsymbol{i} \cdot \frac{\boldsymbol{i} \cdot \mathrm{e}^{\boldsymbol{i} \boldsymbol{i}}}{[\boldsymbol{i} + \boldsymbol{i}]} \ = \ \boldsymbol{i} \cdot \frac{\pi}{\mathrm{e}} \, .$$

So (*) says

23c':
$$\int_{-\infty}^{\infty} \frac{x \cdot \sin(x)}{x^2 + 1} dx = \frac{\pi}{e}.$$

Now that is pretty dang Cool!

Keyhole contours, 3

Some definite integrals can be neatly computed using a *keyhole contour*. Here is an example:

Let K be the contour along \mathbb{R} from 1/r to r, then CCW circle $\mathrm{Sph}_r(0)$, then along \mathbb{R} from r to 1/r, and finally CW circle $\mathrm{Sph}_{1/r}(0)$.

Call the 1/r to r line-segment L_r . Call the r to 1/r line-segment \widetilde{L}_r ; we need a different name because we will be integrating fncs with a branch-point at 0, and we have gone around that branch-point.

Computing Γ . Let's use our K to compute

24:
$$\Gamma := \int_0^\infty \frac{\sqrt{x}}{x^2 + 1} \, \mathrm{d}x$$

With $f(z) := \frac{\sqrt{z}}{z^2+1}$, observe that

$$\int_{\widetilde{\mathbf{L}}_r} f = -[-1] \cdot \int_{\mathbf{L}_r} f.$$

The negative-sign is because we traverse L_r in the opposite direction from L_r . The [-1] is what a square-root is multiplied-by, when we circle CCW once around the branch-point. Because of the form of our f, its value is multiplied by [-1] when circumnavigating the branch-point.

Easily the f-integral along the circles of radius r and 1/r go to zero as $r \nearrow \infty$. So

$$\lim_{r\nearrow\infty}\int_{\mathsf{K}_r} f = \lim_{r\nearrow\infty} \left[\int_{\mathsf{L}_r} f + \int_{\widetilde{\mathsf{L}}_r} f \right] = \lim_{r\nearrow\infty} 2 \int_{\mathsf{L}_r} f = 2\Gamma.$$

The singularities of f are at $\pm i$. They are enclosed by $\mathsf{K} \coloneqq \mathsf{K}_2$, whence

*:
$$2\Gamma = \int_{\mathbf{K}} f = 2\pi i \cdot [\operatorname{Res}(f, i) + \operatorname{Res}(f, -i)].$$

Let \square mean a finite-value that we don't need to compute, because it will be multiplied by zero.

We could just factor $z^2 + 1$ and use CIF, but let's compute the residues at these order-1 poles. So $\operatorname{Res}(f, i)$ equals

$$\lim_{z \to i} [z - i] f(z) = \lim_{z \to i} \frac{[z - i] \sqrt{z}}{z^2 + 1}$$

$$\stackrel{\text{L'H}}{=} \lim_{z \to i} \frac{1 \cdot \sqrt{z} + [z - i] \square}{2z} = \frac{\alpha}{2i},$$

where α is the sqroot of i for this branch of $\sqrt{\cdot}$. Similarly, Res(f, -i) equals

$$\lim_{z \to -i} \frac{[z+i]\sqrt{z}}{z^2+1} \ \stackrel{\text{L'H}}{=\!=\!=} \ \lim_{z \to -i} \frac{1 \cdot \sqrt{z} \ + \ \square}{2z} \ = \ \frac{\beta}{-2i} \ ,$$

where β is the sqroot of -i for this branch of $\sqrt{\cdot}$ fnc.

Computing the sqroots. For this branch of $\sqrt{\cdot}$, our $\alpha = \frac{i+1}{\sqrt{2}}$ and $\beta = \frac{i-1}{\sqrt{2}}$, whence $\alpha - \beta = \frac{2}{\sqrt{2}}$. So from (*),

24':
$$\Gamma = \pi i \cdot \sum \text{Res} = \pi i \cdot \frac{\alpha - \beta}{2i} = \frac{\pi}{\sqrt{2}}$$
.

Cube-root. Our K also applies to

25:
$$\Omega := \int_0^\infty \frac{x^{1/3}}{x^2 + 1} \, \mathrm{d}x$$

Let $g(z) := \frac{z^{1/3}}{z^2+1}$. As before,

$$\int_{\mathbf{L}+\widetilde{\mathbf{L}}} g = [1 - M] \cdot \int_{\mathbf{L}} g,$$

where M is what a cube-root is multiplied-by, when we circle CCW once around the branch-point. Because the form of our g, its value is multiplied by M. Here, $M=\frac{1}{2}[i\sqrt{3}-1]$, the cube-root of 1 that circumnavigation brings us to. Looking ahead,

†:
$$1 - M = \frac{1}{2}[3 - i\sqrt{3}] = \frac{\sqrt{3}}{2} \cdot [\sqrt{3} - i]$$
.

As before, the g-integral on the circles dies off, so

$$\ddagger: [1-M] \cdot \Omega = [1-M] \cdot \int_{\mathsf{L}_{\infty}} g \xrightarrow{\text{note}} \int_{\mathsf{K}} g.$$

Computing residues. Our Res(q, i) equals

$$\begin{split} \lim_{z \to \pmb{i}} [z - \pmb{i}] g(z) &= \lim_{z \to \pmb{i}} \frac{[z - \pmb{i}] \cdot z^{1/3}}{z^2 + 1} \\ &= \underbrace{\frac{\text{L'H}}{z}}_{z \to \pmb{i}} \lim_{z \to \pmb{i}} \frac{1 \cdot z^{1/3} + \square}{2z} = \frac{\pmb{\alpha}}{2\pmb{i}} \,, \end{split}$$

where α is the cube-root of *i* for this branch of $\sqrt[3]{\cdot}$. Similarly, Res(g, -i) equals $\lim_{z \to -i} [z + i]g(z)$, i.e

$$\lim_{z \to -i} \frac{[z+i] \cdot z^{1/3}}{z^2+1} \ \stackrel{\text{L'H}}{=\!\!=} \ \lim_{z \to -i} \frac{1 \cdot z^{1/3} \, + \, \square}{2z} \ = \ \frac{\boldsymbol{\beta}}{-2i} \ ,$$

where β is the cube-root of -i for this branch of $\sqrt[3]{\cdot}$. Here, $\alpha = \frac{1}{2} [\sqrt{3} + i]$ and $\beta = i$, so $\alpha - \beta$ equals $\frac{1}{2}[\sqrt{3} - i]$. Consequently,

$$\int_{\mathsf{K}} g = 2\pi \mathbf{i} \cdot [\sum \mathrm{Res}] = 2\pi \mathbf{i} \cdot \frac{\alpha - \beta}{2\mathbf{i}} = \frac{\pi}{2} \cdot [\sqrt{3} - \mathbf{i}].$$

Thus

$$\begin{split} \frac{\pi}{2} \cdot \left[\sqrt{3} \; - \; \pmb{i} \right] \; & \stackrel{\text{by } (\ddagger)}{=\!=\!=\!=} \; \left[1 - M \right] \Omega \\ & \stackrel{\text{by } (\dagger)}{=\!=\!=\!=} \; \frac{\sqrt{3}}{2} \cdot \left[\sqrt{3} - \pmb{i} \right] \Omega \, . \end{split}$$

I.e, $\frac{\pi}{2} = \frac{\sqrt{3}}{2}\Omega$. So

$$25': \qquad \Omega = \frac{\pi}{\sqrt{3}}.$$

The power of contour-integration, At Your Service!

Four failures

Part of understanding a technique is when it doesn't apply, or when it needs to be modified.

Consider

$$Y_1 := \int_0^\infty \frac{5 + \sqrt{x}}{x^2 + 1} \, \mathrm{d}x.$$

In going around the branch-point, we multiply \sqrt{z} by -1, but that doesn't multiply the integrand by -1, as 5 is unchanged. In this instance, we could write Y_1 as a sum $\left[\int_0^\infty \frac{5}{x^2+1} dx\right] + \left[\int_0^\infty \frac{\sqrt{x}}{x^2+1} dx\right]$ and compute each integral separately.

Now consider
$$Y_2 \; := \; \int_0^\infty \frac{\sin(5+\sqrt{x}\;)}{x^2+1} \, \mathrm{d}x \, .$$

Going around the branch point, we multiply \sqrt{x} by -1, but not 5, and so what happens to $\sin(5+\sqrt{x})$ is complicated. It is unclear how to proceed. Does the formula for the sine of a sum, help?

Our third example is

$$Y_3 := \int_0^\infty \frac{\sin(\sqrt{x})}{x^2 + 1} \, \mathrm{d}x.$$

In going around the branch point, we multiply \sqrt{x} by -1. This happens to multiply $\sin(\sqrt{x})$ by -1, since sin() is an odd fnc, but it is important to understand why the technique still works in this instance.

Our fourth example is the innocuous

$$Y_4 := \int_0^\infty h$$
, where $h(z) := \frac{\cos(\sqrt{z})}{z^2 + 1}$.

Here, the method fails in a novel way.

Going around the branch point multiplies \sqrt{z} by -1. Since $\cos()$ is even, this leaves $\cos(\sqrt{x})$ unchanged. Thus

$$\int_{\mathsf{D}} h \ = \ \int_{\mathsf{L} + \widetilde{\mathsf{L}}} \ h \quad = \quad [1 - 1] \int_{\mathsf{L}} h \quad = \quad 0 \cdot Y_4 \, .$$

Unsurprisingly, $\int_{\mathbf{D}} h$ will be zero, yielding the useless eqn $0 = 0 \cdot Y_4$, giving <u>no</u> information about Y_4 .

Applications of Rouché's thm

Rouché's thm can be viewed as a special case of The Argument Principle.

26: Rouché's Thm. Consider SCC C. Suppose both $\alpha()$ and $\beta()$ are analytic on $\widehat{\mathsf{C}},$ and $|\alpha| > |\beta|$ on C. Then

 α and $\alpha + \beta$ have the same number of zeros [counted with multiplicity] in \mathring{C} .

Note α and $\alpha - \beta$ also have the same number of zeros, in \mathring{C} , since $|\alpha| > |-\beta|$ on C.

For real number K, a z-expression $E=\alpha(z)$ and an arbitrary set C , let an expression such as " $|E|_{\mathsf{C}} \geqslant K$ " or " $|\alpha|_{\mathsf{C}} \geqslant K$ " or " $|\alpha()|_{\mathsf{C}} \geqslant K$ " mean that $\forall z \in \mathsf{C} : |\alpha(z)| \geqslant K$.

27: Ex. R1.

Soln R1.

28: Ex. R1.

Soln R1.

29: Ex. R4. Fix real M>0 and T>2. Prove that

30:
$$Mz^3 - z + T = [z+2] \cdot e^{-z}$$

has precisely 2 solns in $\mathbf{H} := \{z \mid \text{Re}(z) > 0\}.$

Soln R4. We will use $\alpha(z) := Mz^3 - z + T$ and $\beta(z) := [z+2] \cdot e^{-z}$. When $\operatorname{Re}(z) \geqslant 0$, note $|\beta(z)| \leqslant |z+2|$, since $|e^{-z}| \leqslant |e^0| = 1$.

For z = iy on the imaginary axis, note $\alpha(iy)$ equals $-iy^3M - iy + T$. Since y^3M and y have the same sign,

$$|\boldsymbol{\alpha}(\boldsymbol{i}y)| \geqslant |\boldsymbol{i}y + T| > |\boldsymbol{i}y + 2|,$$

since T>2 is real, hence orthogonal to iy. Thus

†: On the imaginary axis, $|\alpha| > |\beta|$.

[This argument needed the strict T>2. For if T=2, then $|\alpha(0)| = |\beta(0)|$.]

The contour. For r>0, let A_r be the radius-r semicircle from -ir through r to ir.

For $r > \frac{1}{M}$, note $Mr^3 - r - 2 > r^2 - r - 2$. For $z \in \mathsf{A}_r$, then, $|\alpha(z)| > r^2 - r - 2$. If also r > 4, then $r^2 > 4r$. Hence

$$r^2 - r - 2 > 3r - 2 > 2r > r + 2 \ge |\beta(z)|$$

for $z \in A_r$. Consequently,

 \ddagger : For $r>Max(4,\frac{1}{M})$, we have $|\alpha|>|\beta|$ on A_r .

For such r, then, our (\dagger, \ddagger) guarantee that $|\alpha| > |\beta|$ on contour D_r , where D_r is arc A_r glued to the line-segment from -ir to ir. Sending $r \nearrow \infty$, then,

In half-plane **H**, expression $[z+2] \cdot e^{-z}$ has the same number of zeros as polynomial $\alpha(z)$.

Counting roots of $\alpha()$. As $x \searrow -\infty$, remark that $\alpha(x) \to -\infty$. Yet $\alpha(0) = T > 0$. So IVT (Intermediate Value Thm) implies $\alpha()$ has a negative real-root.

Unfinished: as of 9May2017

Notation Appendix

Use \in for "is an element of". E.g, letting \mathbb{P} be the set of primes, then, $5 \in \mathbb{P}$ yet $6 \notin \mathbb{P}$. Changing the emphasis, $\mathbb{P} \ni 5$ (" \mathbb{P} owns 5") yet $\mathbb{P} \not\ni 6$.

For subsets A and B of the same space, Ω , the *inclusion relation* $A \subset B$ means:

 $\forall \omega \in A$, necessarily $B \ni \omega$.

And this can be written $B \supset A$. Use $A \subsetneq B$ for proper inclusion, i.e, $A \subset B$ yet $A \neq B$.

The difference set $B \setminus A$ is $\{\omega \in B \mid \omega \notin A\}$. Employ A^c for the **complement** $\Omega \setminus A$. Use $A \triangle B$ for **symmetric difference** $[A \setminus B] \cup [B \setminus A]$. Furthermore

 $A \bullet B$, Sets A & B have at least <u>one</u> point in common; they intersect.

 $A \sqcap B$, The sets have *no* common point; disjoint.

The symbol " $A lackbox{\blacksquare} B$ " both asserts intersection and represents the set $A \cap B$. For a collection $\mathcal{C} = \{E_j\}_j$ of sets in Ω , let the **disjoint union** $\bigcup_j E_j$ or $\bigcup(\mathcal{C})$ represent the union $\bigcup_j E_j$ and also assert that the sets are pairwise disjoint.

For fncs on a set Ω , each subset $B \subset \Omega$ has its corresponding "indicator function of B", written $\mathbf{1}_B$. It is the fnc $\Omega \to \{0,1\}$ which sends points in B to 1 and points in $\Omega \setminus B$ to 0. [So $\mathbf{1}_A + \mathbf{1}_{\mathbb{C}(A)}$ is constant-1.] E.g., $\mathbf{1}_{\text{Primes}}(5) = 1$, and $\mathbf{1}_{\text{Primes}}(9) = 0$.

General Appendix

The **discriminant** of quadratic [i.e, $A\neq 0$] polynomial $q(z) := Az^2 + Bz + C$ is

31.1: $\operatorname{Discr}(q) := B^2 - 4AC$.

The zeros ["roots"] of q are

31.2: Roots
$$(q) = \frac{1}{2A} \left[-B \pm \sqrt{\operatorname{Discr}(q)} \right]$$
.

Hence when A,B,C are real, then the zeros of q form a complex-conjugate pair. And q has a repeated root IFF Discr(q) is zero.

A monic \mathbb{R} -irreducible quadratic has form

31.3:
$$q(x) = x^2 - Sx + P = [x - Z] \cdot [x - \overline{Z}],$$

where $Z \in \mathbb{C} \setminus \mathbb{R}$. Note $S = Z + \overline{Z} = 2\text{Re}(Z)$ is the Sum of the roots. And $P = Z \cdot \overline{Z} = |Z|^2$ is the Product of the roots. The discriminant of g, Discr(g), equals

31.4:
$$S^2 - 4P \stackrel{\text{note}}{=} [Z - \overline{Z}]^2 = -4 \cdot [\text{Im}(Z)]^2$$
.

Completing-the-square yields

31.5:
$$q(x) = [x - \frac{S}{2}]^2 + F^2$$
, where $F \coloneqq |\text{Im}(Z)|$,

which is easily checked. [Exercise]

Abbreviations. Use **posreal** for "positive real number". A sequence $\vec{\mathbf{x}}$ abbreviates (x_1, x_2, x_3, \ldots) . Use $\mathrm{Tail}_N(\vec{\mathbf{x}})$ for the subsequence $(x_N, x_{N+1}, x_{N+2}, \ldots)$ of $\vec{\mathbf{x}}$.

32a: Addition-Cts thm. The addition operation $\mathbb{C}\times\mathbb{C}\to\mathbb{C}$ is continuous. Restated: Suppose $\vec{\mathbf{x}}, \vec{\mathbf{y}} \subset \mathbb{C}$ with $\lim(\vec{\mathbf{x}}) = \alpha$ and $\lim(\vec{\mathbf{y}}) = \beta$. With $p_n \coloneqq x_n + y_n$, then, $\lim(\vec{\mathbf{p}}) = \alpha + \beta$.

Proof. Fix a posreal ε . Take N large enough that

 $\operatorname{Tail}_N(\vec{\mathbf{x}}) \subset \operatorname{Bal}_{\frac{\varepsilon}{2}}(\alpha)$ and $\operatorname{Tail}_N(\vec{\mathbf{y}}) \subset \operatorname{Bal}_{\frac{\varepsilon}{2}}(\beta)$.

Each index k has $p_k - [\alpha + \beta] = [x_k - \alpha] + [y_k - \beta]$. For each $k \ge N$, then,

$$|p_k - [\alpha + \beta]| \le |x_k - \alpha| + |y_k - \beta| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \blacklozenge$$

Remark. The same thm and proof hold for addition on a normed vectorspace; simply replace $|\cdot|$ by the norm $||\cdot||$.

Abbreviations. Use **WELOG** for "without essential loss of generality", and **posint** for "positive integer".

A sequence $\vec{\mathbf{x}}$ abbreviates $(x_1, x_2, x_3, ...)$. Use Diam $(\vec{\mathbf{x}})$ for the diameter of the set $\{x_n\}_{n=1}^{\infty}$.

32b: Mult-Cts thm. The multiplication operation $\mathbb{C}\times\mathbb{C}\to\mathbb{C}$ is continuous. Restated: Suppose $\vec{\mathbf{x}},\vec{\mathbf{y}}\subset\mathbb{C}$ with $\lim(\vec{\mathbf{x}})=\alpha$ and $\lim(\vec{\mathbf{y}})=\beta$. With $p_n:=x_n\cdot y_n$, then, $\lim(\vec{\mathbf{p}})=\alpha\cdot\beta$.

Proof. WELOG $|\beta| \leq 7$. Since $\vec{\mathbf{x}}$ converges, necessarily the Diam($\vec{\mathbf{x}}$) is finite; WELOG

†:
$$\forall \text{ posints } n: |x_n| \leq 50.$$

For each posint n, adding and subtracting a term gives

$$x_n y_n - \alpha \beta = x_n y_n - x_n \beta + x_n \beta - \alpha \beta$$

= $x_n [y_n - \beta] + [x_n - \alpha] \beta$.

Taking absolute-values, then upper-bounding, yields

by (†) and the first sentence.

Fix a posreal ε . Since $\lim(\vec{y}) = \beta$ and $\lim(\vec{x}) = \alpha$, we can take K large enough that for each n in $[K..\infty)$:

$$|y_n - \beta| \leqslant \frac{\varepsilon/2}{50}$$
 and $|x_n - \alpha| \leqslant \frac{\varepsilon/2}{7}$.

Plugging these estimates in to (‡) gives that

$$|x_n y_n - \alpha \beta| \leqslant 50 \cdot \frac{\varepsilon/2}{50} + \frac{\varepsilon/2}{7} \cdot 7 \stackrel{\text{note}}{=} \varepsilon$$

for each $n \ge K$.

As this holds for every ε positive, $\lim(\vec{\mathbf{x}}\cdot\vec{\mathbf{y}})$ indeed equals $\alpha\beta$.

33: Non-neg Lemma. On interval J := [a, b] suppose continuous function h satisfies $h \ge 0$. If $\int_a^b h(t) dt$ is zero, then h() is identically zero.

On a closed contour $\mathbb{C} \subset \mathbb{C}$, suppose a continuous $g: \mathbb{C} \to \mathbb{R}$ is non-negative; $g() \geq 0$. If the arclength integral $\int_{\mathbf{z}} g(z) |dz|$

is zero, then g is identically-zero on C.

 \Diamond

Pf for h. FTSOC, suppose $\exists \mathbf{p} \in J \text{ with } 3\varepsilon := h(\mathbf{p})$ positive. Cty of h at \mathbf{p} says there exists an interval $I \ni \mathbf{p}$ of positive length, so that every $x \in I$ satisfies

$$|h(x) - h(\mathbf{p})| \leq \varepsilon;$$

hence $h(x) \ge 3\varepsilon - \varepsilon = 2\varepsilon$. But h() is non-negative on J, so

$$\int_I h \geqslant \int_I h \geqslant \int_I 2\varepsilon = 2\varepsilon \cdot \operatorname{Len}(I).$$

This latter is positive, yielding a contradiction.

Let $z:[0,1]\to \mathbb{C}$ be a [cts, piecewise smooth] parametrization of C. Then h(t) := q(z(t)) is cts and non-negative. By above, $h \equiv 0$ whence $g \equiv 0$.

Sufficient condition for differentiability

Consider an open subset $U \subset \mathbb{R}^N$ and a map $h: U \to \mathbb{R}$. Use abbreviation $\vec{\mathbf{x}}$ for the N-tuple $\vec{\mathbf{x}} := (x_1, x_2, \dots, x_N)$, a point in \mathbb{R}^N . Let h_j mean $\frac{\mathrm{d}h}{\mathrm{d}x_j}$, that is, the partial-derivative of h() w.r.t its j^{th} argument. Finally, have $\|\cdot\|$ denote the usual Euclidean norm on \mathbb{R}^N : $\|\vec{\mathbf{x}}\| := \sqrt{\sum_{j=1}^N |x_j|^2}$.

34: Thm. Fix a point $\vec{\mathbf{c}} \in U$. Suppose all partial-derivs h_1, \ldots, h_N are defined in a nbhd of $\vec{\mathbf{c}}$, and are each continuous $\underline{\mathbf{at}} \ \vec{\mathbf{c}}$. Then h is differentiable at $\vec{\mathbf{c}}$. \diamondsuit

Proof. Without loss of generality, $\vec{\mathbf{c}} = \vec{\mathbf{0}}$. [Rename $h_{New}(\vec{\mathbf{x}}) := h(\vec{\mathbf{x}} - \vec{\mathbf{c}})$, and translate U.]

WLOG, $h(\vec{\mathbf{0}}) = 0$. [Rename $h_{New}(\vec{\mathbf{x}}) := h(\vec{\mathbf{x}}) - h(\vec{\mathbf{0}})$.] WLOG, $\forall j$, partial-deriv $h_j(\vec{\mathbf{0}})$ is zero. Why? Rename

$$h_{New}(\vec{\mathbf{x}}) := h(\vec{\mathbf{x}}) - \sum_{j=1}^{N} [h_j(\vec{\mathbf{0}}) \cdot x_j].$$

Now that all the partials are zero at the origin, differentiability at the origin is can be stated thusly:

For all $\varepsilon > 0$, there exists $\delta > 0$ so that each $\vec{\mathbf{p}} \in U$ with $0 < ||\vec{\mathbf{p}}|| < \delta$, satisfies $\frac{|h(\vec{\mathbf{p}})|}{||\vec{\mathbf{p}}||} < \varepsilon$.

Of course, the " $< \varepsilon$ " can be replaced by any zerogoing fnc of ε , so ISTProduce a δ such that:

Goal: For all $\varepsilon > 0$, $\exists \delta > 0$ so that each $\vec{\mathbf{p}} \in U$ with $0 < \|\vec{\mathbf{p}}\| < \delta$, has $|h(\vec{\mathbf{p}})| < \varepsilon \cdot K_N \cdot \|\vec{\mathbf{p}}\|$,

for some positive constant K_N ; that is, does not depend on ε , nor on $\vec{\mathbf{p}}$.

Continuity at $\vec{\mathbf{0}}$. Cty of the partials at $\vec{\mathbf{0}}$ admits a $\delta > 0$ small enough that the open ball $\mathbf{B} := \mathrm{Bal}_{\delta}(\vec{\mathbf{0}})$ has this property:

For each j = 1, ..., N and $\forall \vec{\mathbf{x}} \in \mathbf{B}$, we have †: that $|h_j(\vec{\mathbf{x}})| \stackrel{note}{=} |h_j(\vec{\mathbf{x}}) - h_j(\vec{\mathbf{0}})| < \varepsilon.$

Using MVT. Fix an $\varepsilon > 0$, and consider a point $\vec{\mathbf{p}} \in \mathbf{B}$. We'll apply MVT at each index j for which $p_j \neq 0$; so for notational simplicity, assume every j has $p_j \neq 0$.

For $k = 0, 1, \dots, N$ define

$$ec{\mathbf{y}}^{\langle k \rangle} := (p_1, \dots, p_k, \overbrace{0, 0, \dots, 0}^{N-k}).$$

And for j = 1, ..., N, let S_j denote the line-segment from $\vec{\mathbf{y}}^{\langle j-1 \rangle}$ to $\vec{\mathbf{y}}^{\langle j \rangle}$.

As $\|\vec{\mathbf{p}}\| \geqslant \|\vec{\mathbf{y}}^{\langle j \rangle}\|$, each $\vec{\mathbf{y}}^{\langle j \rangle} \in \mathbf{B}$. Hence, since ball **B** is convex, each line-segment lies in **B**.

Apply the MVT to $h \downarrow_{S_j}$; that is, to h restricted to S_j . Our MVT guarantees a point, call it $\vec{\mathbf{x}}^j$, in S_j st.

$$|h_j(\vec{\mathbf{x}}^j)| = \frac{|h(\vec{\mathbf{y}}^{\langle j \rangle}) - h(\vec{\mathbf{y}}^{\langle j-1 \rangle})|}{\|\vec{\mathbf{y}}^{\langle j \rangle} - \vec{\mathbf{y}}^{\langle j-1 \rangle}\|}.$$

Note $\|\vec{\mathbf{y}}^{\langle j \rangle} - \vec{\mathbf{y}}^{\langle j-1 \rangle}\|$ is simply $|p_j|$. And $|h_j(\vec{\mathbf{x}}^j)| < \varepsilon$, courtesy (\dagger) , since $\vec{\mathbf{x}}^j \in S_j \subset \mathbf{B}$. Consequently,

$$|h(\vec{\mathbf{y}}^{\langle j \rangle}) - h(\vec{\mathbf{y}}^{\langle j-1 \rangle})| \leq \varepsilon \cdot |p_j|.$$

Using the Triangle Ineq., summing over $j=1,\ldots,N$ yields that $|h(\vec{\mathbf{y}}^{\langle N \rangle}) - h(\vec{\mathbf{y}}^{\langle 0 \rangle})|$ is upper bounded by $\varepsilon \cdot \sum_{j=1}^{N} |p_j|$. By defn, $\vec{\mathbf{y}}^{\langle N \rangle} = \vec{\mathbf{p}}$ and $\vec{\mathbf{y}}^{\langle 0 \rangle} = \vec{\mathbf{0}}$, so

where we have used that $h(\vec{\mathbf{y}}^{(0)})$ is zero.

Lastly, each $|p_j| = \sqrt{|p_j|^2} \leqslant ||\vec{\mathbf{p}}||$. Summing over j gives $\sum_{j=1}^N |p_j| \leqslant N \cdot ||\vec{\mathbf{p}}||$. This and (‡) together, yield (GOAL) with $K_N := N$.

34a: Remark. The purists among you can use Jensen's Inequality [or Hölder's Inequality] to conclude the stronger $\sum_{j=1}^{N} |p_j| \leq \sqrt{N} \cdot \|\vec{\mathbf{p}}\|$. [For the above proof, however, this improvement is irrelevant.]

Cauchy-Goursat for a rectangle

Here, a *rectangle* has form

$$\mathbf{R} = \{x + \mathbf{i}y \mid x \in [a .. b] \text{ and } y \in [c .. d]\}$$

where a < b and c < d. Let $\partial \mathbf{R}$ denote the boundary of \mathbf{R} , both as a set and as a SCC, and let

$$\mathcal{I}_{\mathbf{R}} := \int_{\partial \mathbf{R}} f(z) \, \mathrm{d}z.$$

Note that $\int_{\partial \mathbf{R}} 1 \, \mathrm{d}z$ and $\int_{\partial \mathbf{R}} z \, \mathrm{d}z$ are each zero, since fncs $[z \mapsto 1]$ and $[z \mapsto z]$ each have an antiderivative. So for arbitrary constants J, K, L, we have that

35a:
$$\int_{\partial \mathbf{R}} f(z) dz = \int_{\partial \mathbf{R}} \left[[f(z) - J] - [z - K]L \right] dz.$$

Splitting. Rectangle **R** splits into 4 congruent subrectangles, A,B,C,D each with half the width and height of **R**. Note

$$\mathcal{I}_{\mathbf{R}} = \mathcal{I}_A + \mathcal{I}_B + \mathcal{I}_C + \mathcal{I}_D$$

since each internal edge is traversed twice, once in each direction, cancelling. Hence

$$|\mathcal{I}_{\mathbf{R}}| \leq |\mathcal{I}_A| + |\mathcal{I}_B| + |\mathcal{I}_C| + |\mathcal{I}_D|.$$

So at least one of the subrectangles has its abs-value at least as large as $\frac{1}{4}|\mathcal{I}_{\mathbf{R}}|$. Pick one according to some definite rule (e.g., first one in CCW order) and call it \mathbf{R}' .

Pf of C-G for a rectangle. Consider a rectangle \mathbf{R}_0 and a fnc f holomorphic on $\widehat{\mathbf{R}_0}$. Use the preceding paragraph to define a sequence of rectangles

$$\dagger$$
: $\mathbf{R}_0 \supset \mathbf{R}_1 \supset \mathbf{R}_2 \supset \dots$

by $\mathbf{R}_{n+1} := \mathbf{R}'_n$. Since $|\mathcal{I}_{\mathbf{R}_n}| \leqslant \frac{1}{4} |\mathcal{I}_{\mathbf{R}_{n+1}}|$, induction gives

Letting D_n and P_n denote the diameter and perimeter of \mathbf{R}_n , note

*:
$$D_n = \frac{1}{2^n} \cdot D_0$$
 and $P_n = \frac{1}{2^n} \cdot P_0$.

The intersection point. The rectangles are closed and bounded, and nested, so they converge to a point; call it \mathbf{q} . [Point \mathbf{q} could be on $\partial \mathbf{R}_0$, which is fine.]

For future reference: Given an arbitrary rectangle **R**, we can replace the constants J,K,L in (35a) by $f(\mathbf{q})$, \mathbf{q} and $f'(\mathbf{q})$, respectively, to get

35b:
$$\mathcal{I}_{\mathbf{R}} = \int_{\partial \mathbf{R}} \left[f(z) - f(\mathbf{q}) - [z - \mathbf{q}] f'(\mathbf{q}) \right] dz$$
.

Using differentiability. Fix an $\varepsilon > 0$. Since f is differentiable at \mathbf{q} , there exists $\delta > 0$ so that every z with $0 < |z - \mathbf{q}| < \delta$ satisfies

$$\left| \frac{f(z) - f(\mathbf{q})}{z - \mathbf{q}} - f'(\mathbf{q}) \right| \leq \varepsilon.$$

Multiply by $z-\mathbf{q}$, then take abs. values, to get

35c:
$$|f(z) - f(\mathbf{q}) - [z - \mathbf{q}]f'(\mathbf{q})| \le \varepsilon \cdot |z - \mathbf{q}|,$$

and this latter holds also for $z = \mathbf{q}$, hence holds for all z in $\mathrm{Bal}_{\delta}(\mathbf{q})$.

Picking index K. The rectangles of (†) all own \mathbf{q} , and their diameters shrink to zero, so we can choose an K large enough that $\mathbf{R}_K \subset \mathrm{Bal}_{\delta}(\mathbf{q})$.

Now (35b) and the Triangle-Ineq-for-Integrals gives that

$$|\mathcal{I}_{\mathbf{R}_K}| \leq \int_{\partial \mathbf{R}_K} |f(z) - f(\mathbf{q}) - [z - \mathbf{q}] f'(\mathbf{q})| \cdot |dz|.$$

Courtesy (35c), then,

$$|\mathcal{I}_{\mathbf{R}_K}| \leq \varepsilon \cdot \int_{\partial \mathbf{R}_K} |z - \mathbf{q}| \cdot |dz|.$$

Each $|z-\mathbf{q}| \leq D_K$, so

$$|\mathcal{I}_{\mathbf{R}_K}| \leq \varepsilon D_K \int_{\partial \mathbf{R}_K} |dz| = \varepsilon \cdot D_K \cdot P_K.$$

Multiplying by 4^K , our (*) and (\ddagger) produce

$$\sharp \sharp : \qquad |\mathcal{I}_{\mathbf{R}_0}| \leqslant \varepsilon \cdot D_0 \cdot P_0 \,.$$

Happily, the RhS goes to zero as $\varepsilon \searrow 0$.

Radius of Convergence

Series notations. Customs about how "series" is used in the context of "convergence of a series" are a bit strange. A "series $\vec{\mathbf{e}}$ " is a <u>sequence</u> $\vec{\mathbf{e}} = (e_k)_{k=0}^{\infty}$, but $^{\heartsuit 5}$ where the word "series" hints to the reader our interest in its <u>sum</u> $\sum(\vec{\mathbf{e}})$. This sum is the limit –when it exists– of the corresponding "partial-sum sequence" $\vec{\mathbf{s}}$, where

36:
$$s_N := \sum_{k \in [0..N)} e_k$$

Use $(\vec{s} = P\Sigma(\vec{e}))$ to indicate this partial-sum relation between sequences. Phrase "series \vec{e} is convergent" means that $\lim(\vec{s})$ exists and is finite. So $\Sigma(\vec{e}) := \lim(\vec{s})$.

To clarify, the n^{th} partial sum means the sum of the first n terms, regardless of the initial index. For example, suppose $\vec{\mathbf{b}} = (b_{\ell})_{\ell=5}^{\infty}$, and $\vec{\mathbf{e}} = P\Sigma(\vec{\mathbf{b}})$. Then $e_3 = b_5 + b_6 + b_7$, and $e_0 = 0$.

Example: Let
$$\vec{\mathbf{b}} := (k^2)_{k=1}^{\infty}$$
 and $\vec{\mathbf{a}} := \mathsf{P}\Sigma(\vec{\mathbf{b}})$. Then $a_n = \frac{1}{6} \cdot [2n^3 + 3n^2 + n]$.

37: Root-test lemma. Given a series $\vec{\mathbf{e}} \subset \mathbb{C}$, define

$$*{:} \qquad \Lambda \quad \coloneqq \quad \limsup_{n \to \infty} \ \sqrt[n]{|e_n|} \quad \stackrel{note}{\in} \quad [0, +\infty] \ .$$

If $\Lambda < 1$ then $\vec{\mathbf{e}}$ is an absolutely-convergent series. If $\Lambda > 1$ then $\vec{\mathbf{e}}$ is "magnificently divergent" Not only $|e_n| \neq 0$, but indeed limsup $|e_n| = +\infty$.

Proof. Let $a_n := |e_n|$,

Case: When $\Lambda < 1$. ISTShow that $\vec{\mathbf{a}}$ is a convergent series. Pick ρ with $\Lambda < \rho < 1$. Take K large enough that $\sup_{n \geqslant K} \sqrt[n]{a_n} \leqslant \rho$. Hence $\sum_{n \geqslant K} a_n \leqslant \sum_{n \geqslant K} \rho^n < \infty$. And $\sum_{n \in [1...K]} a_n < \infty$.

Case: When $\Lambda > 1$.) Pick ρ with $1 < \rho < \Lambda$. By (*), the set $J := \{n \mid \sqrt[n]{a_n} > \rho\}$ is infinite. And each $n \in J$ has $a_n > \rho^n$.

A function $f:\mathbb{R}\to\mathbb{R}$ is **eventually positive** if $\exists K \text{ s.t } \forall x \geqslant K \colon f(x) > 0$. Thus a degree-k poly,

$$f(x) := C_k x^k + \dots + C_1 x + C_0,$$

is eventually positive IFF f has positive leading-coeff, $C_k > 0$.

Power-series notation. A sequence $\vec{\mathbf{c}} \subset \mathbb{C}$ and point $Q \in \mathbb{C}$ determine a power series

38a:
$$\operatorname{PS}_{\vec{\mathbf{c}},Q}(z) := \sum_{n=0}^{\infty} c_n \cdot [z-Q]^n$$
. \square

From the notation we sometimes drop the the center of expansion, just writing $PS_{\vec{c}}$. This is especially true when the center of expansion is $0 \in \mathbb{C}$.

Use "PS" to abbreviate the phrase "power series". Use McS to abbrev **Maclaurin Series**; a PS centered at Q=0. E.g $\text{McS}_{\vec{\mathbf{c}}}(z) = \sum_{n=0}^{\infty} [c_n \cdot z^n]$.

Radius of Convergence. The set of $z \in \mathbb{C}$ for which RhS(38a) converges is called the "set-of-convergence". We write it $SoC(\vec{c}, Q)$

It will turn out that the SoC comprises an open ball, possibly of radius 0 or ∞ , together with some of the points on the boundary of this ball. This open **ball of convergence** is written BoC($\vec{\mathbf{c}}, Q$). Its radius is the **radius of convergence** of RhS(38a), and is written RoC($\vec{\mathbf{c}}$). So $\mathcal{R} := \text{RoC}(\vec{\mathbf{c}})$ is always a value in $[0, +\infty]$, and BoC($\vec{\mathbf{c}}, Q$) = Bal $_{\mathcal{R}}(Q)$.

38b: RoC Lemma (Cauchy, 1821. Hadamard, 1888.) Contemplate power series $PS_{\vec{c},Q}$, as in (38a). Let

$$\Omega := \limsup_{n \to \infty} \sqrt[n]{|c_n|} \stackrel{note}{\in} [0, +\infty].$$

Then $RoC(\vec{c}) = 1/\Omega$ where, here, we interpret $\frac{1}{0}$ as $+\infty$ and $\frac{1}{+\infty}$ as 0.

Proof sketch. Set $a_n := |c_n|$. ISTConsider convergence at a non-negative $x \in \mathbb{R}$. Applying the Root-test,

$$\limsup_{n \to \infty} \sqrt[n]{|c_n x^n|} = \limsup_{n \to \infty} [x \cdot \sqrt[n]{a_n}]$$
$$= x \cdot \limsup_{n \to \infty} \sqrt[n]{a_n} = x \cdot \Omega =: \Lambda.$$

So Λ is less/greater than 1, as x is less/greater than $\frac{1}{\Omega}$.

The index will usually start at zero, but it doesn't have to. The sequence $\vec{\mathbf{e}}$ might be $(e_k)_{k=24}^{\infty}$, or $(e_k)_{k=-5}^{\infty}$.

The argument to RoC is a sequence. So we can write the RoC of PS $f(x) := \sum_{n=0}^{\infty} n^2 x^n$ as RoC $(n \mapsto n^2)$, but <u>not</u> as RoC (n^2) . nor as RoC(f).

39: Three examples. [ASIDE: For fincs on a set Ω , each subset $B \subset \Omega$ has its corresponding "indicator function of B", written $\mathbf{1}_B$. It is the finc $\Omega \to \{0,1\}$ which sends points in B to 1 and points in $\Omega \setminus B$ to 0. [So $\mathbf{1}_A + \mathbf{1}_{\mathbb{C}(A)}$ is constant-1.] E.g, $\mathbf{1}_{\text{Primes}}(5) = 1$, and $\mathbf{1}_{\text{Primes}}(9) = 0$.]

Let's apply the above (38b). Define

$$\mathbb{P} := \text{Primes}; \ D := \text{Odds}; \ S := \{1 + n^2 \mid n \in \mathbb{N}\}.$$

Consider this power series:

39a:
$$\sum_{n=0}^{\infty} 3^n \cdot \mathbf{1}_{\mathbb{P}}(n) \cdot x^n = 9x^2 + 27x^3 + 243x^5 + \dots$$

Its RoC is 1/3, since there are ∞ ly many primes. A funkier PS, centered at 8, is

39b:
$$\sum_{k=0}^{\infty} \left[3^k \cdot \mathbf{1}_D(k) + 4^k \cdot \mathbf{1}_S(k) \right] \cdot [x-8]^k$$
.

Since $\sqrt[n]{3^n + 4^n} \xrightarrow{n} 4$, and $|S| = \infty$, the RoC is $\frac{1}{4}$. Even more interesting is this PS:

39c:
$$\sum_{n=0}^{\infty} \left[5^n \cdot \mathbf{1}_{\mathbb{P}}(n) \cdot \mathbf{1}_S(n) \right] \cdot x^n.$$

As of March2017, its RoC is unknown. If there are ∞ ly many primes of form $1 + n^2$ (conjectured, but unproven) then RoC = $\frac{1}{5}$; otherwise RoC = ∞ , and the PS is a polynomial.

40: Lemma. For each $K \in \mathbb{R}$: $\lim_{x \nearrow \infty} \sqrt[x]{x^K} = 1$.

Moreoever, for each rational function $h() := \frac{p()}{q()}$ which is eventually positive, $\lim_{n \nearrow \infty} \sqrt[n]{h(n)} = 1$.

Proof. Use L'Hôpital's rule. Etc.

41: Same-RoC lemma. Consider a sequence $\vec{\mathbf{c}} = (c_0, c_1, \dots) \subset \mathbb{C}$, and let $\mathcal{R} := \text{RoC}(\vec{\mathbf{c}})$. For each natnum K, and for each rational function $g \neq \text{Zip}$, these coefficient sequences

$$i: (0, ..., 0, c_K, c_{K+1}, c_{K+2}, ...)$$

$$ii: (c_K, c_{K+1}, c_{K+2}, \dots)$$

iii:
$$(g(n)\cdot c_n)_{n=0}^{\infty}$$

give rise to power-series with $RoC = \mathcal{R}$.

Proof sketch. Parts (i) and (ii) follow from (38b).
Part (iii) follows from (40) and (38b). ◆

42: Diff/Integrate a PS. We differentiate and integrate, term-by-term, the $G := \text{PS}_{\vec{\mathbf{c}},0}$ power-series:

$$F(x) = \sum_{j=1}^{\infty} b_j \cdot x^j, \text{ where } b_j := \frac{1}{j} \cdot c_{j-1}.$$
42a:
$$G(x) = \sum_{k=0}^{\infty} c_k \cdot x^k.$$

$$H(x) = \sum_{\ell=0}^{\infty} d_{\ell} \cdot x^{\ell}, \text{ where } d_{\ell} := [\ell+1] \cdot c_{\ell+1}.$$

Lemma (41) tells us that the three PSes have the same RoC.

Observe that $\mathrm{PS}_{\vec{\mathbf{d}}}$ is the term-by-term derivative of $\mathrm{PS}_{\vec{\mathbf{c}}}$. And $\mathrm{PS}_{\vec{\mathbf{b}}}$ is the term-by-term integral of $\mathrm{PS}_{\vec{\mathbf{c}}}$. Does the same relation hold between the *functions* that these PSes determine?

42b: Term-by-term PS Theorem. Given a sequence $\vec{\mathbf{c}} \subset \mathbb{R}$, define sequences/fncs $\vec{\mathbf{b}}, \vec{\mathbf{d}}, F, G, H$ by (42a) and let $\mathcal{R} \coloneqq \mathsf{RoC}(\vec{\mathbf{c}})$. Then

†:
$$RoC(\vec{\mathbf{b}}) = \mathcal{R} = RoC(\vec{\mathbf{d}}).$$

With $B := BoC(\vec{c})$, moreover,

$$\ddagger: \forall z \in B: F(z) = \int_0^z G.$$

And G is in $\mathbf{C}^{\infty}(B \to \mathbb{R})$, with G' = H.

42c: Coro. Suppose PS $G(x) := \sum_{j=0}^{\infty} c_j \cdot [x-Q]^j$ has positive RoC. Then this PS is the Taylor series of G, centered at Q.

 \Diamond

Pf of (42b). We'll establish that G'=H; the integral result (‡) follows analogously. ISTo fix a posreal $\rho < \mathcal{R}$, let $U := \operatorname{Bal}_{\rho}(0)$, and prove G'=H when restricted to U. We will apply the DUC Thm (Derivative uniform-convergence) from notes-AdvCalc.pdf to these fncs (defined only on U)

$$f_n(x) := \sum_{j \in [0 \dots n]} c_j x^j$$
.

By definition of coeff-sequence $\vec{\mathbf{d}}$ from (42a),

$$f'_n(x) = \sum_{k \in [0..n)} d_k x^k$$
.

⁹⁷For the curious, see Wikipedia on Landau's problems.

In order to show that seq $(f'_n)_{n=1}^{\infty}$ is sup-norm Cauchy, pick a number V with $\rho < V < \mathcal{R}$.

Now $\frac{1}{V} > \limsup_{n \to \infty} \sqrt[n]{|d_n|}$ since, by (41), RoC($\vec{\mathbf{d}}$) equals \mathcal{R} . Thus there is an index K with

$$\forall n \geqslant K: \quad \sqrt[n]{|d_n|} < \frac{1}{V}.$$

We henceforth only consider indices n dominating K. For each $k \ge n$, then,

42d:
$$|d_k| \leqslant 1/V^k$$
.

Sup-norm. For $x \in U$ and indices $\ell > n$,

$$f'_{\ell}(x) - f'_{n}(x) = \sum_{k \in [n \dots \ell]} d_k x^k.$$

From (42d), then,

$$|f'_{\ell}(x) - f'_{n}(x)| \leqslant \sum_{k=n}^{\infty} \frac{|x|^{k}}{V^{k}}.$$

Since U owns x,

$$|f'_{\ell}(x) - f'_{n}(x)| \leqslant \sum_{k=n}^{\infty} \frac{\rho^{k}}{V^{k}} = \left[\frac{\rho}{V}\right]^{n} \cdot C,$$

where C is the positive constant $1/[1 - \frac{\rho}{V}]$. Taking a supremum over all $x \in U$ yields

42e:
$$||f'_{\ell} - f'_{n}|| \leq \left[\frac{\rho}{V}\right]^{n} \cdot C,$$

for each pair $\ell > n \geqslant K$. Sending $n \nearrow \infty$ sends $\mathrm{RhS}(42e) \to 0$.

The limit $\lim_n f_n(0)$ exists, equaling c_0 . Now apply the DUC Thm.

A power-series with a new center. We show that a function defined by a PS is analytic in its entire ball-of-convergence.

43: The setting. We have a point $P \in \mathbb{C}$ and a sequence $\vec{\mathbf{a}} \subset \mathbb{C}$ such that $\alpha \in (0, +\infty]$, where $\alpha := \mathsf{RoC}(\vec{\mathbf{a}})$. This engenders a \mathbf{C}^{∞} -fnc from $\mathsf{Bal}_{\alpha}(P) \to \mathbb{C}$, by

43a:
$$\mathcal{F}(z) := \sum_{k=0}^{\infty} a_k \cdot [z - P]^k.$$

Fix a new center $Q \in \mathbb{C}$ with $|Q - P| < \alpha$. Thus

43b:
$$\beta \in (0, +\infty]$$
, where $\beta := \alpha - |Q - P|$. \square
Moreoever, $\operatorname{Bal}_{\beta}(Q) \subset \operatorname{Bal}_{\alpha}(P)$.

44: New-center theorem. Take $P, Q, \alpha, \beta, \vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ from (43). For each natnum k, this summation is absolutely convergent:

44a:
$$b_k := \sum_{N=k}^{\infty} a_N \cdot {N \choose k} \cdot Q^{N-k} \in \mathbb{C}$$
.

Moreoever, $RoC(\vec{\mathbf{b}}) \geqslant \beta > 0$. This value

44b:
$$\mathcal{G}(z) := \sum_{k=0}^{\infty} b_k \cdot [z - Q]^k,$$

44c: agrees with $\mathcal{F}(z)$, for each $z \in \operatorname{Bal}_{\beta}(Q)$.

Lastly, for each natnum k,

44d:
$$b_k = \frac{1}{k!} \cdot \mathcal{F}^{(k)}(Q)$$
.

In other words, RhS(44b) is the Taylor series for \mathcal{F} , centered at Q.

Proof. WLOG P = 0. Fix a point $Z \in \operatorname{Bal}_{\beta}(Q)$. Writing Z = Q + [Z - Q], its N^{th} -power is

$$Z^N = \sum_{k=0}^{N} {N \choose k} \cdot Q^{N-k} \cdot [Z-Q]^k$$
.

Thus, since $Z \in \operatorname{Bal}_{\alpha}(P)$,

$$\begin{split} f(Z) &= \sum_{N=0}^{\infty} a_N \cdot Z^N \\ &= \sum_{N=0}^{\infty} \sum_{k=0}^{N} \underbrace{a_N \cdot \binom{N}{k} \cdot Q^{N-k} \cdot [Z-Q]^k}_{h_{N,k}}. \end{split}$$

This is a sum, in a certain order, over the set $H := \{(N, k) \in \mathbb{N} \times \mathbb{N} \mid N \ge k\}$. We need this sum to be absolutely convergent. The sum $\sum_{N=0}^{\infty} \sum_{k=0}^{N} |h_{N,k}|$ equals

$$*: \quad \sum_{N=0}^{\infty} \sum_{k=0}^{N} |a_{N}| \cdot {N \choose k} \cdot |Q|^{N-k} \cdot |Z-Q|^{k} \ = \ \sum_{N=0}^{\infty} |a_{N}| \cdot Y^{N} \ ,$$

where Y := |Q| + |Z - Q|. From $Z \in \operatorname{Bal}_{\alpha}(0)$ and (43b), we conclude that $Y < \alpha$. From the proof of Root-test lemma (37, P.24), the righthand side of (*) is finite.

Since $\mathbf{S} := \sum_{N=0}^{\infty} \sum_{k=0}^{N} |h_{N,k}|$ is finite, we can reverse the order of summation and conclude that

$$\mathbf{S} = \sum_{k=0}^{\infty} \sum_{N=k}^{\infty} |h_{N,k}|$$
$$= \sum_{k=0}^{\infty} \left[\sum_{N=k}^{\infty} |a_N| \cdot {N \choose k} \cdot |Q|^{N-k} \right] \cdot |Z - Q|^k.$$

We could have chosen our $Z \neq Q$, thus allowing division by $|Z - Q|^k$. Hence, each bracketed sum is finite. So each sum in (44a) is absolutely convergent, and we have a well-defined number b_k .

For a general $Z \in \operatorname{Bal}_{\alpha}(0)$, reversing the original sum gives

$$f(Z) = \sum_{k=0}^{\infty} \sum_{N=k}^{\infty} h_{N,k}$$
$$= \sum_{k=0}^{\infty} \left[\sum_{N=k}^{\infty} a_N \cdot \binom{N}{k} \cdot Q^{N-k} \right] \cdot [Z - Q]^k,$$

which equals $\sum_{k=0}^{\infty} b_k \cdot [Z-Q]^k$.

Establishing (44d). Corollary 42c tells us that

$$k! \cdot b_k \stackrel{\text{by } (42c)}{=\!=\!=\!=} \mathcal{G}^{(k)}(Q) \stackrel{\text{by } (44c)}{=\!=\!=\!=} \mathcal{F}^{(k)}(Q)$$
.

45: Prop'n. Power-series

*:
$$\mathcal{F}(z) := \sum_{n=0}^{\infty} a_n \cdot [z - Q]^n$$

has positive RoC. Suppose $\vec{\mathbf{y}}$ is a sequence of distinct complex numbers converging to Q, such that

$$\forall j \in \mathbb{Z}_+$$
: $\mathcal{F}(y_j) = 0$.

Then $\vec{\mathbf{a}}$ is all-zero, and \mathcal{F} is the zero function.

Proof. WLOG, each $y_j \neq Q$. FTSOC, suppose $\vec{\mathbf{a}} \neq \vec{\mathbf{0}}$; let L be the smallest index with $a_L \neq 0$. Formally dividing (*) by $[z-Q]^L$ gives PS

$$\mathcal{G}(z) := \sum_{k=0}^{\infty} b_k \cdot [z - Q]^k$$
,

where each $b_k := a_{L+k}$. Since each $y_i - Q \neq 0$,

$$\mathcal{G}(y_j) = \mathcal{F}(y_j)/[y_j - Q]^L = 0.$$

But $RoC(\vec{\mathbf{b}}) = RoC(\vec{\mathbf{a}}) > 0$, so \mathcal{G} is cts in a nbhd of Q, and thus $\mathcal{G}(Q) = \lim(\mathcal{G}(\vec{\mathbf{y}})) = 0$. This contradicts that $\mathcal{G}(Q) = b_0 = a_L \neq 0$.

46: PS Uniqueness Thm. Imagine power-series

$$\mathcal{F}(z) := \sum_{n=0}^{\infty} a_n \cdot [z - P]^n \quad \text{and}$$
$$\mathcal{G}(z) := \sum_{n=0}^{\infty} b_n \cdot [z - P]^n$$

where $B := \mathsf{BoC}(\vec{\mathbf{a}}) \cap \mathsf{BoC}(\vec{\mathbf{b}})$ is non-void. Suppose there is a set $Y \subset B$ st. $\mathcal{F}|_Y = \mathcal{G}|_Y$, and Y has a cluster point, Q_0 , in B. Then $\vec{\mathbf{a}} = \vec{\mathbf{b}}$, so $\mathcal{F} = \mathcal{G}$.

Remark. It does <u>not</u> suffice for Y to have a cluster-point on the *boundary* of B: Distinct functions $\mathcal{F}(z) := \sin(\frac{1}{z-7})$ and $\mathcal{G} := -\mathcal{F}$ have Taylor series with RoC = 7. Yet

$$\mathcal{F}(y_k) = 0 = \mathcal{G}(y_k)$$
, for each posint k ,

where
$$y_k := 7 + \frac{1}{2\pi k}$$
.

Proof of (46). Subtracting PSes gives us a PS

$$f(z) := \sum_{n=0}^{\infty} c_n \cdot [z - P]^n$$

so that $f|_{Y} \equiv 0$, making $(\vec{\mathbf{c}} \stackrel{?}{=} \vec{\mathbf{0}})$ our goal.

For each $q \in B := \mathsf{BoC}(\vec{\mathbf{c}})$, let U(q) denote the largest open ball (centered at q) which fits inside B. By the New-center thm, the Taylor-series for f, centered at q, converges to f on all of U(q).

Pick a Y-cluster-point $Q_0 \in B$. By (45), f is identically zero on $U(Q_0)$.

On the line-segment running between Q_0 and P, we can pick a (finite) list of points

$$Q_0, Q_1, \ldots, Q_{K-1}, Q_K := P$$
,

such that each $Q_k \in U(Q_{k-1})$. Arguing inductively, since f is identically zero on $U(Q_{k-1})$, the the Taylorseries at Q_k has all-zero coeffs. This therefore holds at P. So $\vec{\mathbf{c}} = (0, 0, 0, \dots)$.

47: Coro. Suppose \mathcal{F} and \mathcal{G} are analytic functions on some connected open set $V \subset \mathbb{C}$. If

$$\{z \in V \mid \mathcal{F}(z) = \mathcal{G}(z)\}$$

has a cluster point in V, then $\mathcal{F} = \mathcal{G}$.

 \Diamond

§Index, with symbols at the beginning

 $f^{(n)}$: n^{th} derivative of f, 1 Bal(), CldBal(), Sph(), 2 PBal(), Ann(), 2 Itr(), Cl(), ∂ (), Γ (): Operators, 2 Γ , Γ : Contour operators, 8 A_r, L_r, D_r, U: Contours, 13 K_r: Keyhole contour, 17 T_K(z), R_K(z): Taylor stuff, 11 Γ , Γ , Γ on sets, 20

Addition-is-continuous thm, 20 annulus, 2 Argand plane, 1

ball of convergence, 24 boundary, 2

Cauchy Inequality, 9 Cauchy Integral Formula, 8 Cauchy-Goursat thm, 8 Cauchy-Riemann egns, 4 CIF, see Cauchy Integral Formula circular reasoning, see tautology cis(), $cosine + i \cdot sine$, 7 closed, closure, clopen, 2 compact set, 3 complement of a set, 2 Completing-the-square, 20 complex conjugate, 1, 6 Cone-boundedness Lemma, 10 Constancy thm, 5, 9 continuous, 3 cos-sin zeros Lemma, 7 CoV: Change-of-Variable, 1

discriminant, 13, 20
DUC, Derivative uniform convergence thm, proved in Prof.K
Adv.-Calc notes, 25

eventually positive, 24 exponential complex, 6

Fund. thm of Algebra, 4, 10

Gauss mean value thm, 9 GCIF, see Generalized CIF Generalized CIF thm, 8

Harmonic Lemma, 5

indicator function, 20, 25 inner-radius, 2 interior-point, 2 ISTProve, *i.e*: It-Suffices-to-prove ITOf, *i.e*: In-terms-of

Jordan Lemma, 16

keyhole contour, 17

 $\begin{array}{l} \mbox{Limit-closed Lemma, 3} \\ \mbox{limit-closed, 3} \\ \mbox{Liouville thm, 9} \\ \mbox{Local-constancy Lemma, 9, 10} \end{array}$

Maclaurin Series, 24
Maximum-modulus principle, 10
McS, see Maclaurin Series
metric space, 1
Minimum-modulus principle, 10
Morera's thm, 8
Mr. Rogers, see neighborhood
MS, MSes, see metric space
Multiplication-is-cts thm, 20

nbhd, see neighborhood neighborhood, \mathcal{Z} Non-neg Lemma, 21

Open pullback Lemma, 3 open set, 2 Open-set Diff-path-conn. thm, 5 outer-radius, 2

Path-indep thm, 5, 8
path-independence property, 5
PIP, see path-indep. property
polynomial
discriminant, 20
splits, 10
Taylor, 11
power series, 12, 24
Proof
circular, see circular reasoning
overlapping-ball, 10
PS, see power series

radius of convergence, RoC, 24 residue, 12

Same-RoC Lemma, 25 SCC, 8 set-of-convergence, 24 sphere, 2 symmetric difference, 20

tail of a sequence, 1 tautology, see Proof, circular Taylor polynomial, 11 Taylor-remainder corollary, 11 Taylor-series thm, 11 Theorems

Addition-is-continuous, 20
Cauchy Inequality, 9
Cauchy Integral, 8
Cauchy-Goursat, 8
Cone-boundedness, 10
Constancy, 5, 9
cos—sin zeros, 7
Fund. thm of Algebra, 4, 10
Gauss mean value, 9
Generalized CIF, 8
Harmonic, 5
Jordan, 16
Limit-closed, 3
Liouville, 9
Local-constancy, 9, 10

Maximum-modulus, 10

Minimum-modulus, 10
Morera's, 8
Multiplication-is-cts, 20
Non-neg, 21
Open pullback, 3
Open-set Diff-path-conn., 5
Path-indep, 5, 8
Same-RoC, 25
Taylor-remainder, 11
Taylor-series, 11
Unique fnc-limit, 3
Unique-limit, 2
Triangle-inequality, 1

Unique fnc-limit Lemma, 3 Unique-limit Lemma, 2

 $\label{eq:WLOG} WLOG = \mbox{Without-loss-of-generality},$