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Entrance. Use i for one of the sqroots of 1. Thus
i2 = 1 = [ i ]2. Henceforth, x, y, u, v denote reals, un-
less otherwise stated. A complex number can be writ-
ten in form [x·1] + [y·i ]. The real and imaginary
parts of z := [x·1] + [y·i ] are

Re(z) := x and Im(z) := y .

(N.B: We will usually write [x·1] + [y·i ] as x+ iy or as x+ yi .)
The std picture of C is called the Argand plane. It

is useful to interpret algebraic operations, addition,
multiplication, complex conjugation, geometrically on
this plane.

The complex conjugate of z := x+ iy is written
as z. It is

z := Re(z)− Im(z)i
note
==== x− yi .

Evidently ∀ζ,ω,z ∈ C, with z = x+ iy:

ζ + ω = ζ + ω and ζ · ω = ζ · ω ;

Re(z) = [z + z]
/
2 and Im(z) = [z − z]

/
[2i ] ;

zz = |z|2 note
==== x2 + y2 .

Sequence notation. A sequence ~x abbreviates
(((x1, x2, x3, . . .))). For a set Ω, expression “~x ⊂ Ω”
means [∀n : xn ∈ Ω]. Use TailN (~x) for the subse-
quence

(((xN , xN+1, xN+2, . . .)))

of ~x. Given a fnc f :Ω→Λ and an Ω-sequence ~x, let
f(~x) be the Λ-sequence

(((
f(x1), f(x2), f(x2), . . .

)))
.

Suppose Ω has an addition and multiplication. For
Ω-seqs ~x and ~y, then, let ~x+~y be the sequence whose
nth member is xn + yn. I.e

~x + ~y =
[
n 7→ [xn + yn]

]
.

Similarly, ~x · ~y denotes seq
[
n 7→ [xn· yn]

]
.

A glance at Metric Spaces

The usual metric on C is

Dist(ζ, ω) :=
∣∣ζ − ω

∣∣ .
We will need to handle at least four MSes [metric

spaces]: The Reals, the Complexes, C × C and the
Riemann Sphere. As such, let’s simplify and look at
general metric spaces.

A metric space [MS] is a pair (((X,m))) where X is
a set, and m:X×X→[0,∞) is a metric. A metric m
satisfies that ∀w,x,y,z ∈ X:

MS1a: m(w,w) = 0.

MS1b: If m(w, x) = 0 then w = x.

MS2: m(y, z) = m(z, y). [Symmetry]

MS3: m(w, y) 6 m(w, x) + m(x, y). [4-Inequality]
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Fix a point p ∈ X and a “radius” r ∈ R. Define open
ball, closed ball, sphere and punctured (open)
ball as follows:

Balr(p) :=
{
w ∈ X

∣∣ m(w,p) < r
}

;

CldBalr(p) :=
{
w ∈ X

∣∣ m(w,p) 6 r
}

;

Sphr(p) :=
{
w ∈ X

∣∣ m(w,p) = r
}

;

PBalr(p) :=
{
w ∈ X

∣∣ 0 < m(w,p) < r
}
.

[Chasing definitions: When r is negative then all four sets are

empty. When r = 0 then Bal0(p) = ∅ = PBal0(p). And

CldBal0(p) = {p} = Sph0(p).] For non-negative α and r,
define the open annulus as [form is AnnInner

Outer()]

Annαr (p) :=
{
w ∈ X

∣∣ α < m(w,p) < r
}
.

This is the emptyset unless r > α, in which case the
thickness of the annulus is r − α. The superscriptα
and subscript r are, respectively, the inner-radius
and outer-radius of annulus Annαr (p). An inner-
radius of zero has Ann0

r(p) = PBalr(p). Note that
Annα∞(p) is the exterior of a closed-ball. I.e

Annα∞(p) = X r CldBalα(p) .

Seq.-Limit. Seq ~x ⊂ X converges to a point p ∈ X
if m(xn,p)→0 as n↗∞. I.e, if for each ε>0, there
exists index K st. ∀n > K, we have m(xn,p) < ε.
Equiv.: ∀ε>0, ∃K ∈ Z+ st. TailK(~x) ⊂ Balε(p).

We indicate this convergence by lim(~x) = p, or as[
lim
n→∞

xn
]

= p. Let’s now justify the equal-sign.

1: Unique-limit Lemma. In MS (((X,m))), suppose a se-
quence ~x converges to points p and q. Then p = q.♦

Pf. FTSOContradiction suppose p 6= q. By (MS1b),
distance m(p,q) is positive; let’s call it 2H. So it
suffices to produce a point b ∈ X with

m(b,p) < H and m(b,q) < H .∗:

For then, symmetry (MS2) yields m(p, b) < H. Now
our Triangle Inequality chirps in with

2H
def
=== m(p,q)

4-Ineq
6 m(p, b) + m(b,q)

note
< 2H ,

i.e, that 2H < 2H. #

[Length H is half the distance, and b is close to both.]

Obtaining such a b. Of course, the only place
we could get such a b is from ~x; we’ll show, for a large
enough index M , that b := xM satisfies (∗). To do
that, we’ll simply apply the defn of limit.

Since lim(~x) = p, there exists index K such that
[n>K] ⇒ m(xn,p) < H. And ∃ an indexL such that
[n>L] ⇒ m(xn,q) < H. Happily, M := Max(K,L)
dominates both K and L, so b := xM fulfills (∗). �

Open/closed sets. A set U ⊂ X is open [in X] if
U is a union of open balls (possibly ∞ly many).

The complement [in X] of an X-subset S is XrS.
If X is understood, the complement may be written
as Sc or {(S).

A set E ⊂ X is closed [in X] if its X-complement
is open.♥1 If a set is both open and closed, then it
is called clopen. [In C, the only clopen sets are the whole

space, C, and its complement ∅, the empty set. Some MSes,

however, have non-trivial clopen subsets.]
For a subset S ⊂ X, a pt p ∈ S is “an interior-

point of S” if there exists an open ball B with
p ∈ B ⊂ X. I.e, ∃r>0 with Balr(p) ⊂ S. Relations
“neighborhood of ” and “interior-pt of ” are inverses:
Set S is a “neighborhood of p” IFF p is an interior-
point of S. Use nbhd to abbreviate “neighborhood”.

The interior of S is

Itr(S) := {p ∈ S | p is an interior-pt of S} .

Equiv., the interior of S is the union of all open sub-
sets of S. Equiv., Itr(S) is the largest open subset
of S. Consequently, S is open IFF Itr(S) = S.

The closure of S is

Cl(S) := {p ∈ X | ∀r>0, open ball Balr(p) hits S} .

Equiv., Cl(S) is the intersection of all closed supersets
of S. Equiv., Cl(S) is the smallest closed superset
of S. Consequently, S is closed IFF Cl(S) = S.

Closure-of and Interior-of are dual notions in that
{
(
Cl(E)

)
= Itr

(
{(E)

)
.

The “boundary of set S [in X]” is

∂(S) :=

{
p ∈ X

∣∣∣∣ ∀r>0, open ball Balr(p)

hits both S and Xr S.

}
.

So ∂(S) = Cl(S) ∩ Cl(Sc).

♥1Typically, most sets in a MS are neither open nor closed.
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A set S ⊂ X is limit-closed [in X] if ∀~s ⊂ S:
Whenever p := lim(~s) exists in X, then p ∈ S.

2: Limit-closed lemma. Set E ⊂ X is closed IFF E is
limit-closed. ♦

Pf(⇒). Consider a seq ~s ⊂ E and limit p := lim(~s)
in X. Were p in the complement U := X r E, then
∃r>0 with Balr(p) ⊂ U . But this implies, for each n,
that m(sn,p) > r. And that contradicts the supposed
convergence of ~s to p. �

Pf(⇐). FTSOC, suppose E fails to be closed. Then
U := X r E is not open, so ∃q ∈ U satisfying that
every ball about q sticks out of U , that is, hits E.

Consequently, for n = 1, 2, 3, . . ., the intersection

E ∩
[
Bal1/n(q)

]
is non-void. Pick a point in that intersection, and call
it, say, zn. Then [limn→∞ zn] equals q, contradicting
that E was limit-closed. �

Defn. A set E ⊂ X is compact if each seq ~s ⊂ E
admits a subsequence ~e ⊂ ~s which converges to a
point in E. That is, there exist indices n1 < n2 < . . .
and a point p ∈ E s.t

[
lim
k→∞

snk
]

= p.

The above Limit-closed lemma implies that compact
sets are automatically♥2 closed. �

Fnc limits. Consider MSes (((X,m))) and (((Ω, µ))),
points p ∈ X and ω ∈ Ω, and a fnc h:

[
Xr{p}

]
→Ω.

Expression [
lim
z→p

h(z)
]

= ω

means: ∀ε>0, ∃δ>0 such that

∀z ∈ X: If 0 < m(z,p) < δ then µ
(
h(z),ω

)
< ε .

Equiv.: h
(
PBalδ(p)

)
⊂ Balε(ω) .

Equiv.: PBalδ(p) ⊂ h 1
(
Balε(ω)

)
.

3:

♥2Our defn of compact is for MSes, and it generalizes to topo-
logical spaces. In a general topological space, is possible for a
compact set to not be closed.

These balls are in different spaces, with different met-
rics. To write, for example, this last property pre-
cisely, we’d write

m-PBalδ(p) ⊂ h 1
(
µ-Balε(ω)

)
.

3a: Unique fnc-limit Lemma. With notation from
above [WNFAbove], if[

lim
z→p

h(z)
]

= ω1 and
[
lim
z→p

h(z)
]

= ω2 ,

then ω1 = ω2. Pf. See proof of Unique-limit Lemma. ♦

3b: Defn. Fnc g:(((X,m)))→(((Ω, µ))) is continuous at
a point p∈X if lim

z→p
g(z) = g(p). We say “g is con-

tinuous ” if g is cts at each point in Dom(g). �

3c: Thm. [WNFAbove]. Fnc g is continuous at p IFF

For each sequence ~z ⊂ X, if lim(~z) = p,
then lim

(
g(~z)

)
= g(p).

Proof. Exercise. ♦

4a: Open pullback lemma. Fnc h:(((X,m)))→(((Ω, µ))) is
[everywhere] cts IFF for each Ω-open set Λ⊂Ω, its
pullback h 1(Λ) is open in X. Proof. Exercise. ♦

4b: Example. For a cts h, pullbacks preserve openness.
However, push-forwards need not. E.g, the sine fnc
sin :R→( 3, 3) is cts, and U := (0, 3π

4 ) is open in R.
Yet the push-forward set sin(U), is the half-open in-
terval (0, 1], which is not an open [nor closed] subset
of the output-space, ( 3, 3). �

Back home to C
As a nice exercise, let’s state and prove a fact about
subsets of C. [The same result holds in every MS.] Let
m(z, w) :=

∣∣z − w∣∣ denote the usual metric on C.

5: Thm. For an arbitrary S ⊂ C, the set

E := S ∪ ∂(S)

is closed. ♦

Filename: Problems/Analysis/Calculus/complex-notes.jk.latex
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Set-up. ISTProve that U := [Cr E] is open.
FTSOC, suppose U not open. Then there exists a

point p ∈ U such that p /∈ Itr(U). Imagine we could
establish

∀r > 0, ∃ a point q ∈ S with m(q,p) < r .5a:

Then every ball about p, hits S. But every ball also
hits CrS, since the ball owns p ∈ U . And this implies
the contradiction that p is a boundary-pt of S. �

Proof of (5a). Fix an r>0. Since p is not a U -interior-
point, ∃b ∈ E with m(b,p) < r. If b is in S, then we
are done.

Otherwise, bmust be in ∂(S). Recall that difference

r − m(b,p)

is positive. Since b ∈ ∂(S), there are points of S
arbitrarily close to b. In particular, ∃q ∈ S with

m(q, b) < r − m(b,p) .∗:

Thus

m(q,p)
4-Ineq
6 m(q, b) + m(b,p)

by (∗)
< r

as desired. �

Polynomials over C. An old theorem, slightly
misnamed:

6: Fundamental Theorem of Algebra (Gauss and others).
Consider a monic C-polynomial

h(t) := tN +BN−1t
N−1 + . . . +B1t+B0 .

Then h factors completely over C as

h(t) = [t− Z1] · [t− Z2] · . . . · [t− ZN ] , ♦

for a list Z1, . . . , ZN ∈ C, possibly with repetitions.
This list is unique up to reordering.

If h is a real polynomial, i.e h = h, then h fac-
tors over R as a product of monic R-irreducible linear
and R-irred. quadratic polynomials. The product is
unique up to reordering. Proof. See (16e, P.10).

[There is a proof in my A Primer on Polynomials pamphlet].

Cauchy-Riemann eqns. On an open set D ⊂ C,
consider a fnc h:D→C, which we have written as
h(x+ iy) = u(x, y) + iv(x, y), giving names to its
real and imaginary parts.

A point x+ iy can also be written in polar coor-
dinates as reiθ, with r,θ ∈ R. So we can view u
[and v] either as a fnc of (((x, y))) or as a fnc of (((r, θ))).
Differentiability of h() at a particular point z, forces
equality of partial-derivs at z. The eqns are called
the Cauchy-Riemann eqns:

Cartesian: ux = vy and uy = vx .7a:

Polar: r·ur = vθ and uθ = r·vr .7b:

Proof of (7a). Firstly, for h to be diff’able at z means:

Our h is defined in a nhbd of z, and lim
∆z→0

h(z+∆z)−h(z)
∆z

exists in C .

Let w := h(z) and ∆w := h(z + ∆z)− h(z).

�� ��Case: Pure real: ∆z := ∆x Computing, ∆w
equals

u(x+ ∆x, y) + iv(x+ ∆x, y) −
[
u(x, y) + iv(x, y)

]
=
[
u(x+ ∆x, y)− u(x, y)

]
+ i

[
v(x+ ∆x, y)− v(x, y)

]
.

Hence, ∆w
∆z equals

u(x+ ∆x, y) − u(x, y)

∆x
+ i ·v(x+ ∆x, y) − v(x, y)

∆x
.

Sending ∆x→ 0 yields that

lim
∆z→0

∆w
∆z

= ux(x, y) + i · vx(x, y) .†:

�� ��Case: Pure imag: ∆z := i∆y Our ∆w equals

[
u(x, y + ∆y) − u(x, y)

]
+ i

[
v(x, y + ∆y) − v(x, y)

]
.

So ∆w
∆z equals u(x, y+∆y)−u(x,y)

i∆y + i ·v(x, y+∆y)− v(x,y)
i∆y ,

i.e

i ·u(x, y + ∆y) − u(x, y)

∆y
+

v(x, y + ∆y) − v(x, y)

∆y
.

Launching ∆y → 0 reveals that

lim
∆z→0

∆w
∆z

= i ·uy(x, y) + vy(x, y) .‡:
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Equating the real parts of (†) and (‡) gives LhS(7a).
And equating the imaginary parts produces
RhS(7a). �

Proof (7a)⇒(7b). The CoV from polar to cart coords
is

(((x, y))) =
(((
rcos(θ), rsin(θ)

)))
.

Abbreviating c := cos(θ) and s := sin(θ), then,♥3

∂u

∂r
=
[∂u
∂x
· ∂x
∂r

]
+
[∂u
∂y
· ∂y
∂r

]
= [ux · c] + [uy · s] .

Computing all the first-partials gives

ur = ux·c + uy·s ; uθ = r
[
ux·s − uy·c

]
;

vr = vx·c + vy·s ; vθ = r
[
vy·c − vx·s

]
.

Applying (7a) to write all the partials ITOf x, gives

ur = ux·c − vx·s ; uθ = r
[
ux·s + vx·c

]
;†:

vr = vx·c + ux·s ; vθ = r
[
ux·c − vx·s

]
.‡:

Comparing LhS(†) with RhS(‡), and RhS(†) with
LhS(‡), yields (7b). �

7c: Caveat. If z is not the origin, i.e r 6= 0, then the
converse (7b)⇒(7a) holds. However, at the origin
(7b) always holds, hence has no content. [E.g, uθ(0)

is always zero, since [θ 7→ 0·exp(iθ)] necessarily has derivative

zero.] So at the origin, (7b) does not imply (7a). �

8: Open-set Differentially-path-connected Thm. Con-
sider a path-connected subset E ⊂ C. If E is open,
then ∀p,q ∈ E, there exists a differentiable path
z:[0, 1]→E with z(0) = p and z(1) = q. ♦

Two consequences of the Cauchy-Riemann eqns.:

9a: Constancy theorem. Consider a path-connected
open D ⊂ C, and holomorphic h:D→C.

i : If h′ ≡ 0, then h is constant on E.

ii : If h and h are holomorphic, then h ≡ 0.

iii : If |h| is constant, then h is constant. ♦

♥3In Newton’s notation, ux·c is ux
(
rcos(θ), rsin(θ)

)
· cos(θ).

Pf of (i). Given p,q ∈ D, ISTProve h(q) = h(p).
Our (8) gives a diff’able z:[0, 1]→E with z(0) = p

and z(1) = q. So

0 =

∫ 1

0
h′
(
z(t)

)
·z′(t) dt =

∫ 1

0
[h ◦ z]′

= h
(
z(1)

)
− h

(
z(0)

)
= h(q) − h(p) . �

Pf of (ii). Write h with real and imaginary parts, as
h = u+ iv. So h = u+ i ·[ v]. C-R eqns of h thus say
ux = vy, and of h say ux = vy. Hence ux ≡ 0. The

other C-R eqn shows vx ≡ 0. Thus h′
note
==== ux + ivx

is identically zero. Now apply (i). �

Pf of (iii). If |h| ≡ 0, then h ≡ 0. So WLOG, number
κ := |h|2 6= 0. As h is never zero, I may divide to con-
clude that h() = κ

h() is holomorphic. Now apply (ii).�

9b: Harmonic lemma. Suppose h is holomorphic an
open D ⊂ C. Then [Re ◦h] and [Im ◦h] are each
harmonic on D. Proof. See Brown&Churchill. ♦

Path-independence and differentiability. Here
is the non-trivial part of the thm from P.141 & P.146 of
Brown&Churchill, 9th-ed..

Say that fnc f :D→C has the path-independence
property [PIP] if for all closed-contours C: The
contour-integral

∫
C f exists, and equals zero.

10a: Path-indep theorem. On an open D ⊂ C, sup-
pose f :D→C is continuous. If f has the path-inde-
pendence property, then there exists a differentiable
function g:D→C, with g′ = f . ♦

Proof. WLOG D is non-void and connected, since we
can argue for each path-connected component sepa-
rately.

Fix a “base-point” z0 ∈ D. For each p ∈ D there
exists a contour C from z0 to p, since D is path-
connected, and courtesy (8). Define g(p) :=

∫
C f ; this

is well-defined because f has the PIP.
To show that g is diff’able at an arbitrary p ∈ D,

and that g′(p) = f(p), we fix an ε > 0. ISTProduce
a δ>0 such that for all z ∈ PBalδ(p):∣∣∣∣g(p+∆z)− g(p)

∆z
− f(p)

∣∣∣∣ 6 ε ,†:

where we are writing z as p + ∆z.
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Obtaining δ. Since D is open, ∃r > 0 such that
Balr(p) ⊂ D. And since f is cts at p, there exists
α>0 so that each z ∈ Balα(p) has

∣∣f(z)− f(p)
∣∣ < ε.

Let δ := Min(r, α), which we note is positive.

The Estimate. Fix a point z ∈ PBalδ(p); so
displacement ∆z := z − p has |∆z| < δ.

Let L denote the line-segment contour from p to z.
We parametrize L as w:[0, 1]→D, by

w(t) := p + [t·∆z] . So

w′(t) = ∆z . Thus

g(p+∆z)− g(p) =

∫ 1

0
f
(
w(t)

)
· w′(t) dt

= ∆z ·
∫ 1

0
f
(
p + [t·∆z]

)
dt .

Dividing by ∆z [Exer: Why is ∆z 6= 0?], then subtracting

f
(
p
) note

====

∫ 1

0
f
(
p
)

dt

from both sides, yields that

g(p+∆z)− g(p)

∆z
− f(p) =

∫ 1

0

[
f
(
p + [t∆z]

)
− f(p)

]
dt .

Taking abs.values and using our Triangle-Ineq-for-
Integrals, yields∣∣∣g(p+∆z)−g(p)

∆z − f(p)
∣∣∣ 6 ∫ 1

0

∣∣f(p + [t∆z]
)
− f(p)

∣∣ dt.‡:

But each p + [t∆z] is in the δ-ball about p. Hence the
integrand in (‡) is 6ε. Thus RhS(‡) 6 ε·[1− 0] = ε,
yielding (†), as desired. �

C-exponential

For z := x·1 +y·i with x,y ∈ R, its complex conju-
gate z is x·1 − y·i . Its real and imaginary parts are

Re(z) := x =
z + z

2
, Im(z) := y =

z − z

2i
.

By the Pythagorean thm, |z|2 = x2 + y2 = zz .

For µ,ν ∈ C, note, µ+ ν = µ+ ν and µ · ν = µ · ν.
Let’s extend the exponential fnc to the complex

plane.

11a: Defn. For z ∈ C, define

exp(z) := ez :=
∞∑
n=0

1

n!
·zn = 1 + z + 1

2z
2 + 1

6z
3 + . . . ;

cos(z) :=
∞∑
j=0

[ 1]j

[2j]!
·z2j = 1 − 1

2z
2 + 1

24z
4 − . . . ;

sin(z) :=
∞∑
k=0

[ 1]k

[2k + 1]!
·z2k+1 = z − 1

6z
3 + 1

120z
5 − . . . .

Each series has ∞-RoC. ♦

Since we have absolute convergence of each series
at each z, we can re-order terms without changing
convergence.

11b: Lemma. Fix α,β ∈ C. Then

eα · eβ = eα+β . ♦

Proof. For natnum N , recall the Binomial thm which
says that ∑

j+k=N

(N
j,k

)
· αjβk = [α+ β]N ,∗:

where the sum is over all ordered-pairs (((j, k))) of
natnums. By its defn [and abs.convergence], eαeβ equals[ ∞∑
j=0

1

j!
·αj
]
·
[ ∞∑
k=0

1

k!
·βk
]

=
∞∑
N=0

[ ∑
j+k=N

1

j!

1

k!
· αjβk

]
.

But 1
j!·k! equals 1

N ! ·
N !
j!·k! . Hence eαeβ equals

∞∑
N=0

1

N !

[ ∑
j+k=N

(N
j,k

)
· αjβk

]
by (∗)
=====

∞∑
N=0

1

N !
[α+ β]N ,

which is the defn of eα+β. �
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11c: Lemma. For θ,x,y,z complex numbers:

ei θ = [cos(θ) + i sin(θ)] =: cis(θ) . Hence11.1:

ei θ + e i θ

2
= cos(θ) ,

ei θ − e i θ

2i
= sin(θ) . Also,11.2:

ex+iy = ex · ei y = ex · [cos(y) + i sin(y)] , so11.3:

ex−iy = ex·[cos(y) − i sin(y)] ,11.4:

since cos( y) = cos(y) and sin( y) = sin(y). When θ
is real, then,

Re(ei θ) = cos(θ) and Im(ei θ) = sin(θ) .11.5:

Since the coefficients in their power-series expansions
are all real, our exp(),cos(),sin() fncs each commute
with complex-conjugation, i.e

exp(z)=exp(z), cos(z)=cos(z), sin(z)=sin(z) ;11.6:

Finally, the familiar translation-identities

cos(z − π
2 ) = sin(z) , sin(z + π

2 ) = cos(z)11.7:

extend to the complex plane. ♦

Proof. Exercise, using (11b). �

Examples from Fri.17Feb

Two examples from class.

12: cos-sin zeros Lemma. All zeros of [complex] cos()
lie on the real axis. In particular, cos() has only one
period, that of 2π. Both stmts hold for sin(). ♦

Proof for cos. Fix a z = x+ iy st. cos(z) = 0. Thus

0 = 2cos(z) = exp(i · [x+ iy]) + exp( i · [x+ iy])

= exp( y + ix) + exp(y − ix)

= e ycis(x) + eycis( x) .

Since these summands cancel, they must have equal
abs.values. Thus, since x and y are real,

e y = e y· |cis(x)| = ey· |cis( x)| = ey.∗:

But R-exp() is 1-to-1, so (∗) implies that y = y.
Hence y = 0, i.e z is real. �

Integration example. Fix a real α > 0. To compute

J :=

∫ α

0
eit dt ,

we could directly use an antiderivative: So J equals

1
i eit

∣∣∣t=α
t=0

= i [eiα − 1] .†:

Alternatively, we can decompose into real and imag-
inary parts, as J = U + iV , where

V :=

∫ α

0
sin(t) dt = cos(t)

∣∣∣t=α
t=0

= [cos(α)− 1]

and

U :=

∫ α

0
cos(t) dt = sin(t)

∣∣∣t=α
t=0

= sin(α) .

With S := sin(t) and C := cos(t), then, U + iV equals

S − i [C − 1] = i ·[iS + C − 1]

= i ·[cis(α) − 1]
note
==== RhS(†),

as expected. In this instance, direct integration was
faster than breaking the integrand into real and imag-
inary parts. �
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Cauchy-Goursat and friends

Let SCC mean “positively oriented simple-closed-
contour”. For a SCC C, have C̊ be the (open) region C
encloses, and let Ĉ mean C together with C̊. So Ĉ is
C ∪ C̊; it is automatically simply-connected and is a
closed bounded set.
Convention: Each circle mentioned, e.g Sphr(p),

is also viewed as an SCC, i.e, as positively oriented.

13a: Cauchy-Goursat Theorem (C-Goursat). Consider
SCC C, and function f which is holomorphic on Ĉ.

Then

∫
C
f = 0. ♦

13b: Cauchy Integral Formula (CIF). For a fnc f which
is holomorphic on Ĉ, where C is a SCC, then

f(w) =
1

2πi

∫
C

f(z)

z − w
dz ,

for each point w ∈ C̊. ♦

Proof outline. Take r>0 small enough that circle
Sr := Sphr(w) is enclosed by C. Since h(z) := f(z)

z−w
is holomorphic on the annulus bounded by C and Sr,
our C-Goursat implies that

∫
Ch =

∫
Sr
h. Now send

r↘0 and use that f is cts at w. Etc. �

13c: Generalized CIF (GCIF). A function f which
is holomorphic on open set D, is ∞ly-differentiable.

Moreover, consider a SCC C with Ĉ ⊂ D. Then for
each point w ∈ C̊, we have that

f (n)(w) =
n!

2πi

∫
C

f(z)

[z − w]n+1
dz ,

for n = 0, 1, 2, . . .. ♦

Pf sketch. For each n, verify that f(z)
[z−w]n+1 satisfies the

conditions for differentiating under the the integral-
sign w.r.t w. Then differentiate. �

13d: Morera’s theorem. On open set D suppose cts f
has path-independence property:

∫
C f = 0 for each

closed contour C ⊂ D. Then f is holomorphic. ♦

Proof. By Path-indep thm (10a, P.5), our f has an
antiderivative g. Courtesy GCIF, this g is ∞ly-differ-
entiable, hence f is differentiable. �

14.1: The set-up for multiple poles. Consider simply-
connected D, a SCC C ⊂ D, and distinct points
w1, . . . , wL in C̊. Positive integers J1, . . . , JL deter-
mine a polynomial

P(z) := [z − w1]J1 · [z − w2]J2 · . . . · [z − wL]JL .∗:

For k = 1, . . . , L, let Pk(z) be product RhS(∗), but
omitting the kth-term. E.g,

P3(z) := [z − w1]J1 · [z − w2]J2 ·
L∏
k=4

[z − wk]Jk .

Lastly, consider SCCs E1, . . . ,EL in D, which avoid
all the w-points. Moreover, suppose Ek encloses
point wk, but none of the other w-points. �

14.2: Corollary. Using notation from (14.1), suppose
h is holomorphic on D. Then∫

C

h(z)

P(z)
dz =

L∑
k=1

∫
Ek

h(z)

P(z)
dz .†:

Further, defining hk(z) := h(z)
Pk(z) then∫

Ek

h(z)

P(z)
dz =

∫
Ek

hk(z)

[z − wk]Jk
dz .‡:

Since hk() is holomorphic on Êk, the RhS(‡) can be
computed by GCIF, theorem (13c) ♦

14.3: CIF example. [Problem #2a,bP.170] Let C be
the radius=2 circle Sph2(i); it passes through points
i and 3i . We seek to compute

J :=

∫
C

1

z2 + 4
dz .∗a:

Soln a: Setting α := 2i and β := 2i , we factor
z2 + 4 as [z −α]·[z−β]. So point α is enclosed by C,
whereas point β is outside of C. Hence f(z) := 1

z−β
is holomorphic on Ĉ. Writing the above integrand as
f(z)
z−α , then, CIF (13b) yields

J = 2πi · f(α) = 2πi · 1
α−β

= 2πi · 1
4i =

π

2
. �
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The second part of the problem asks us to compute

Jb :=

∫
C

1

[z2 + 4]2
dz .∗b:

Soln b: The integrand’s denominator factors as
[z −α]2·[z − β]2. Rational fnc h(z) := 1

[z−β]2
is holo-

morphic on Ĉ. Writing the above integrand as h(z)
[z−α]2

,

then, applying GCIF [thm (13c)] with n=1, gives

Jb =
2πi

1!
· h′(α) = 2πi · h′(α) .

Note h′(z) = 2
[z−β]3

, so h′(α) = 2/[4i ]3 = 1/[32i ].

Consequently,

Jb = 2πi · 1

32i
=

π

16
. �

15a: Cauchy Inequality. Fix w ∈ C. For r>0, let
Cr := Sphr(w). Consider an f which is holomorphic
on Ĉr and let Mr be the maximum of |f | on Cr. Then
∀n ∈ N: ∣∣f (n)(w)

∣∣ 6
n!Mr

rn
.∗: ♦

Proof. By GCIF, and Triangle-Ineq-for-Integrals,

∣∣f (n)(w)
∣∣ 6 n!

2π

∫
Cr

∣∣f(z)
∣∣

|z − w|n+1
|dz|

=
n!

2π · rn+1

∫
Cr

∣∣f(z)
∣∣ |dz|

6
n!Mr

2π · rn+1

∫
Cr
|dz|

=
n!Mr

2π · rn+1
· 2πr . �

15b: Liouville Thm. Suppose f is entire and is bnded,
i.e, there exists a number β>0 with |f | 6 β on C.
Then f is constant. ♦

Proof. ISTShow that f ′ ≡ 0.
Applying Cauchy Inequality at n=1 gives

∀w ∈ C:
∣∣f ′(w)

∣∣ 6 β
r ,

for every r>0. Now send r↗∞. �

15c: Gauss mean value thm (Gauss-MVT). “The arclength-

average on a circle, of a holomorphic function, is its value at

the center.” Suppose f is holomorphic on region Ĉ,
where C := Sphr(p) is a circle. Then

1

Len(C)

∫
C
f(z)·|dz| = f(p) .∗: ♦

Proof. Parametrize C by z(t) := p + reit; so z() maps
[0, 2π] onto C. Noting z′(t) = rieit, our CIF implies
that f(p) equals

1

2πi

∫
C

f(z)

z − p
dz =

1

2πi

∫ 2π

0

f
(
z(t)

)
reit

· rieit dt

=
1

2πr

∫ 2π

0
f
(
z(t)

)
· r dt

=
1

Len(C)

∫ 2π

0
f
(
z(t)

)
· r dt .

Since
∣∣z′(t)∣∣ =

∣∣rieit
∣∣ = r, this last integral equals∫

Cf(z)·|dz|. Hence (∗). �

16a: Local-constancy lemma. Suppose f is holomor-
phic on an open ball B with center point p. If number∣∣f(p)

∣∣ dominates |f | on B, then f is constant on B.♦

Proof. Courtesy Constancy thm (9a, P.5), ISTShow
|f | constant on B. Fixing a circle C := Sphr(p) in B,
then, ISTShow:

The fnc |f |, on C, equals number
∣∣f(p)

∣∣.∗:

By hypothesis, difference g(z) :=
[∣∣f(p)

∣∣ − ∣∣f(z)
∣∣]

is non-negative on C, and is cts, since f is cts. We seek
to show that g is identically-zero, which will follow
from Non-neg Lemma (33, P.21) if we can establish
that arclength-integral

∫
C g(z) |dz| is zero.

Integrating. Recall f(p) = 1
Len(C)

∫
Cf(z)·|dz|,

courtesy the Gauss-MVT. Taking abs-values,

∣∣f(p)
∣∣ 6 1

Len(C)

∫
C

∣∣f(z)
∣∣·|dz|

by hyp
6

1

Len(C)

∫
C

∣∣f(p)
∣∣·|dz| =

∣∣f(p)
∣∣ .
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The ends are equal, so all three quantities are equal.
In particular, the two integrals are equal, so their dif-
ference ∫

C

[∣∣f(p)
∣∣ − ∣∣f(z)

∣∣]·|dz|
is zero. And that is the arclength-integral of g. �

16b: Maximum-modulus principle (MaxMP). Suppose
holomorphic f on domain D is such that |f | attains
a maximum on D. Then f is constant on D. ♦

Proof. We use the “overlapping-ball argument”.

Suppose p∈D is a point where |f | attains a maxi-
mum on D. Fixing an arbitrary point q∈D, we seek
to show that f(q) = f(p).

Fix a polygonal path C⊂D going from p to q. Since
D is open, and C is closed and bounded, there exists
[this uses the completeness property of R] a sufficiently small
ε>0 so that for every point w ∈ C, ball Bal2ε(w) lies
in D. Pick a sequence of points

w0 := p, w1, w2, . . . , wN−1, wN := q

on C, so that each distance |wn − wn−1| < ε. Thus
each ball Bn := Bal2ε(wn) owns the next point, wn+1.

Applying Local-constancy, (16a), to B0, says f is

constant on B0. So f(w1) = f(w0)
note
==== f(p). Thus

|f(w1)| dominates |f | on D, hence on B1. We can
now invoke Local-constancy on B1, to conclude that
f(w2) = f(p), since w2 ∈ B1. Iterating, we eventu-

ally show that f(q)
note
==== f(wN ) = f(p). �

16c: MaxMP corollary. Suppose f is cts on a closed-
bounded non-empty region R ⊂ C which is path-
connected. If f is holomorphic and non-constant on
the interior of R then:

Fnc |f | attains a maximum at at-least-one
point of ∂R, and never on the interior of R.

♦

16d: Minimum-modulus principle (MinMP). Suppose h
is non-constant and holomorphic on domain D. If h is
never zero on D, then |h| does not attain a minimum
on D. Proof. Apply MaxMP to f := 1

h . ♦

16e: Fund. thm of Algebra. Every non-constant poly-
nomial h has a C-root. (Consequently, h splits i.e, a monic

h factors completely as h(z) = [z − r1] · . . . · [z − rN ].) ♦

Proof. WLOG h is monic. Since h is non-constant,
its high-order term has form zN for some N>1. As
|z|↗∞, this term dominates all the other terms in h.
So
∣∣h(z)

∣∣→∞ as |z|↗∞. Hence there is a sufficiently
large closed ball B := CldBalr(0) so that:

There is strict inequality
∣∣h(z)

∣∣ > ∣∣h(0)
∣∣,

for each z ∈ CrB.
∗:

Now, FTSOC suppose h has no root, i.e, |h| is
never zero. Fix a B satisfying (∗). Since B is closed-
bounded and |h| is cts, our |h| attains a minimum
on B, hence, courtesy (∗), on all of C. But this con-
tradicts the Minimum-modulus principle. �

16f: Cone-boundedness Lemma. For a holomorphic f
on the unit ball B := Bal1(0), suppose

f(0) = 0 and ∀z ∈ B: |f(z)| 6 1 .

Then

|f ′(0)| 6 1 . On B, furthermore: |f(z)| 6 |z| .†:

Conversely, if |f ′(0)| = 1 or there exists a non-zero
w ∈ B with |f(w)| = |w|, then f is linear. I.e, f has
form f(z) = M ·z, for some M ∈ C with |M | = 1. ♦

Proof. It follows from later work [Taylor’s thm and

friends] that
g(z) :=

{
f(z)/z , if z 6= 0

f ′(0) , if z = 0

}

is holomorphic on B. On circle Cr := Sphr(0), note
that |g| is (upper-)bnded by 1

r , since |f | is bnded by 1.

Obtaining (†). Fix w∈B and radius with |w|6r<1.
Our g is holomorphic on Ĉr. Applying MaxMP, (16b),
to g on Ĉr shows that |g(w)| 6 1

r . Sending r↗1
implies that |g(w)| 6 1. At w=0 this says |f ′(0)| 6 1,
and at non-zero w it asserts |f(w)| 6 |w|.

The converse. A non-zero w with |f(w)| = |w|
says |g(w)|=1. And |f ′(0)|=1 is equiv to |g(0)|=1.
If either happens, then |g| attains a maximum at an
interior point of B, so MaxMP implies that g is some
constant; say, M , of abs.value 1. Thus f(z) = M ·z.�
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Taylor’s thm

The “Kth Taylor polynomial for f , centered at
Q” is

Tf,Q,K(z) :=
K−1∑
n−0

cn·[z −Q]n, where cn := f (n)(Q)
n! .17:

The Kth remainder term is defined by

f(z) = Tf,Q,K(z) + Rf,Q,K(z) .

Sometimes the f , Q or z is dropped from the notation,
when it is understood.

18a: Taylor-series thm. Suppose f is holomorphic on
open ball B centered at Q ∈ C. Define coefficient

cn :=
f (n)(Q)

n!
.

Then power series

f̃(z) :=
∑∞

n=0
cn · [z − Q]n

converges to f(z) on B, i.e f̃ �B = f . ♦

Prelim. WLOG Q = 0. So cn = f (n)(0)
n! , and the Kth

Taylor-polynomial is

TK(z) :=
K−1∑
n=0

cn· zn .

Fixing a point p ∈ B, our goal is to establish

∞∑
n=0

cn·pn equals f(p) .

To accomplish this, we’ll show that theKth remainder
term,

RK := f(p) − TK(p)†:

goes to zero as K↗∞. The method is to integrate
around a circle C := Sphr(0) ⊂ B that encloses p; so

r > |p|. Below: Let
∫

mean
∫

C .

For a complex w 6=1 and posint K, easily (exercise)

1

1− w
=

wK

1− w
+

K−1∑
n=0

wn .∗: �

Proof. CIF says f(p) equals 1
2πi

∫ f(z)
z−p dz. For a z ∈ C,

ratio w := p/z isn’t 1. So (∗) applies, giving

1

z − p
=

1

z
· 1

1 − [p/z]

by (∗)
=====

1

z
· [p/z]K

1− [p/z]
+

1

z
·
K−1∑
n=0

[p/z]n

=
pK

[z − p]·zK
+

K−1∑
n=0

pn
1

zn+1
.

Multiplying by f(z), then integrating, says f(p)
equals

pK · 1

2πi

∫
f(z)

[z − p]zK
dz +

K−1∑
n=0

pn· 1

2πi

∫
f(z)

zn+1
dz .

But GCIF says 1
2πi

∫ f(z)
zn+1 dz = f (n)(0)

n! , which is cn. So

the righthand sum is simply TK(p). This establishes
that

RK = pK · 1

2πi

∫
f(z)

[z − p] · zK
dz .‡:

Upper-bnding
∣∣RK

∣∣. Recall z is on C, a circle of
radius r>|p|. As |z − p| > |z| − |p| = r − |p|, we

have that 1
|z−p| <

1
r−|p| . Letting M be the maximum

of |f | on C, then,

∣∣∣ ∫ f(z)

[z − p] · zK
dz
∣∣∣ 6

∫
M[

r − |p|
]
· rK

|dz|

=
M · 2πr[

r − |p|
]
· rK

.

Happy, (‡) hands us∣∣RK

∣∣ 6
M · r
r − |p|

·
[ |p|
r

]K
.

Since ratio |p|
/
r < 1, the RhS↘0 as K↗∞. �

18b: Taylor-remainder coro. Suppose h is holomorphic
on Ĉ, where C is a circle centered at some point Q.

Consider the Taylor decomposition

h(p) = Th,Q,K(p) + Rh,Q,K(p)
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at a point p ∈ C̊. Then the (‡)-formula for the re-
mainder term, is

Rh,Q,K(p) = [p−Q]K · hK(p) , where

hK(p) :=
1

2πi

∫
C

h(ζ) dζ

[ζ − p] · [ζ −Q]K
.∗:

Moreover, this hK() is holomorphic [since (∗) satisfies

the conditions for diff’ing under the integral sign w.r.t p]. ♦

Remark. The above shows that holomorphic fncs are
analytic [locally have power-series expansions], and term-
by-term differentiation shows that analytic fncs are
holomorphic. Unfinished: as of 9May2017 �

18c: Remark. Using the above notation,

h(z) =

[K−1∑
n=0

[z − Q]n · f
(n)(Q)
n!

]
+ [z − Q]K · hK(z) .

Now suppose that some-order h-derivative at Q is not
zero. Let K now be the smallest index such that
h(K)(Q) 6= 0. Unfinished: as of 9May2017 �

19a: Defn. For an analytic f :Dopen→C, in a general
sense each point Q ∈ ∂(D) is a singular point ; that
is, each nbhd of Q has a point of analyticity of f [see

P.74]. A Q is a removable singularity if f can be
defined at Q so that now, f is analytic in a nbhd of Q.

A singularity Q is an isolated singularity if f is
analytic in some punctured-ball PBalr(Q).

An isolated singularity Q is a “pole of f ” if
limz→Q |f(z)| =∞; otherwise, Q is an essential sin-
gularity of f .

The “residue of f at an isolated singularity Q” is
the unique complex number R such that function

z 7→ f(z) − R
z−Q

has an antiderivative in some PBalr(Q) with r > 0.
At an isolated singularity Q, suppose f is analytic

on PBalr(Q), where r > 0. The Laurent expansion of
f has form

f(z) =
[ ∞∑
k=1

bk
[z −Q]k

]
+
[ ∞∑
n=0

an·[z −Q]n
]

where RoC(~a) > r and RoC(~b) = ∞. Consequently
Res(f,Q) = b1. �

19b: Residue Thm. For a SCC C, suppose f is analytic
on Ĉ except at finitely many points Q1, . . . , QL, each
in C̊. Then∫

C
f(z) dz = 2πi ·

[ L∑
`=1

Res(f, Q`)
]
. ♦

19c: Residue computation. Let f(z) := sin(z) · ez/z7.
What is R := Res(f, 0)?

Writing g(z) := sin(z) · ez as PS
∑∞
n=0 anz

n, our
Res(f, 0) is a6. Recall

sin(z) = z
1 −

z3

6 + z5

120 − . . . and

ez =
∑∞

k=0

zk

k! .

So a6 = [1
1 ·

1
120 ] − [1

6 ·
1
6 ] + [ 1

120 ·
1
1 ] = 1

6 · [
1
10 −

1
6 ] = 1

90 .�
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Prof. JLF King CoV of Definite-integral to contour-integral, 1 Page 13 of 29

20: Standing notation. For r>0, let Lr be the line seg-
ment from r to r, and let Ar be the semicircular arc
from r through ir to r. Glued together they make
SCC, Dr, which looks like a D, a horizontal capital D.

Let U := Sph1(0) be the unit circle. �

CoV of Definite-integral to contour-integral, 1

To compute

W :=

∫ 2π

0

1

4 + cos(θ)
dθ ,21a:

let’s use CoV z := eiθ. So dz
dθ = ieiθ = iz. Thus

dθ =
dz

iz
and cos(θ) =

1

2
[z + 1

z ] =
z2 + 1

2z
.

So,

W =

∫
U

1[
4 + z2+1

2z

] dz

iz
=

1

i

∫
U

1[
4 + z2+1

2z

]
z

dz .

The integrand’s denominator is 4z + z2+1
2 = q(z)

2 ,

where q(z) := z2 + 8z + 1. Hence
�� ��W = 2

i ·J , where

J :=

∫
U

1

q(z)
dz .

Poles.Note Discr(q) = 82 − 4·1·1 = 22[42 − 1] = 22·15.

So g factors as g(z) = [z − α][z − β], where

α := 4 +
√

15 and β := 4−
√

15 .

Easily, α is enclosed by U, whereas β is outside of U.
Letting h(z) := 1/[z − β], our J equals∫

U

h(z)

z − α
dz

by CIF
===== 2πi ·h(α) =

πi√
15

. Hence

W =
2

i
· πi√

15
=

2π√
15

.21a′:

Extending. For M > 1, define

WM :=

∫ 2π

0

1

M + cos(θ)
dθ .21b:

Our CoV z := eiθ says that
�� ��WM = 2

i ·J where

J :=
∫

U
1
q(z) dz, for quadratic q(z) := z2 + 2Mz + 1.

As before, Discr(q) = 22[M2 − 1]. Hence g(z) equals
[z − α][z − β] where

α := M +
√
M2 − 1 and β := M −

√
M2 − 1 .

Since M>1, our α is enclosed by U, whereas β is
outside. With H(z) := 1/[z − β], then, J equals∫

U

H(z)

z − α
dz

by CIF
===== 2πi ·H(α) =

πi√
M2 − 1

. Thus

WM =
2π√
M2 − 1

.21b′:

General method. The CoV z := eiθ transforms
[0, 2π] into U, the unit-circle. Moreover, for

�� ��k ∈ Z :

dθ =
dz

iz
,

cos(θ) = 1
2 [z + 1

z ] =
z2 + 1

2z
, cos(kθ) =

z2k + 1

2zk
,

sin(θ) = 1
2i [z − 1

z ] =
z2 − 1

2iz
, sin(kθ) =

z2k − 1

2izk
.

21c:

Thus a
∫ 2π

0 integral of a rational function of cos(kθ)
and sin(`θ) is transformed, by the CoV, into a

∫
U inte-

gral of a rational fnc of z. Factoring the denominator
gives the poles of the integrand, so we can apply CIF,
equivalently, the Residue thm.

As an example, consider W :=
∫ 2π

0
1

2+sin(θ) dθ. Our

CoV (21c) says that

W =

∫
U

1

2 + z2−1
2iz

· dz

iz
note
====

∫
U

2

q(z)
dz ,

where q(z) := z2 + 4iz − 1. Thus

Discr(q) = [4i ]2 − 4·1·[ 1] = 22·[ 3] . So,

Roots(q) = 1
2 [ 4i ± 2i

√
3] = [ 2 ±

√
3]i .

Consequently q(z) = [z −α]·[z − β], where

α := [ 2 +
√

3]i and β := [ 2 −
√

3]i .

Easily, β is outside U andα is inside, since [ 1 < α]⇔
[1 <

√
3], which holds. Hence W equals∫
U

2/[z − β]

z −α
dz

CIF
=== 2πi · 2

α− β
= 2πi · 2

2i
√

3
.

I.e,

∫ 2π

0

1

2 + sin(θ)
dθ =

2π√
3
.21d:
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Prof. JLF King Definite-integral from limit of contour-int., 2 Page 14 of 29

Higher-order poles. The preceding examples had
an order-1 pole, so let’s go up. For natnum N , define

JN :=

∫ 2π

0
cos(θ)N dθ .21e:

Of course, the symmetry of cos() forces JOdd to be
zero, but let’s apply The Method, and see what tran-
spires. ♥4

Our CoV says JN equals∫
U

⌊z2 + 1

2z

⌋N
· dz

iz
=

1

i ·2N
∫

U

[z2 + 1]N

zN+1
dz .

With f(z) := [z2 + 1]N , let C denote the coefficient
of zN in f(z). Then f (N)(0) =

[
N ! · C

]
. Our GCIF

says
∫

U
[z2+1]N

zN+1 dz equals 2πi
N ! · f

(N)(0)
note
==== 2πi · C.

Thus

JN =
2π

2N
· C .

When N odd then C=0, giving JOdd=0, as expected.

When N = 2H is even: The coefficient of z2H in
polynomial f(z) = [z2 + 1]2H is binomial-coeff

(2H
H

)
.

So for H = 0, 1, 2, . . .,

J2H =
2π

22H
·
(

2H

H

)
= 2π ·

(2H
H

)
22H

.21e′:

This multiplier,
(2H
H

)/
22H , we recognize as: The Prob-

ability, in 2H flips of a fair coin, of getting exactly
H heads. [That probability indeed decreases monotonically

to zero as H↗∞.]
We get the curiosity that the average value of the

integral, 1
2π

∫ 2π
0 cos(θ)N dθ, is a probability. Hmm. . .

♥4For N=2H even, we must have JN↘0 monotonically as
N↗∞, since cos(θ)N goes to monotonically to zero, except
when θ is a π-multiple.

Definite-integral from limit of contour-int., 2

For posint N , we seek

VN :=

∫ ∞
∞

1

xN + 1
dx22a:

when N is even. [When N odd, then the integrand has a

pole at x = 1.] Moreover, does this limit exist in R?:

Λ := lim
N→∞
N even

VN .22b:

The Trick. Note that∣∣∣∫
Ar

1

zN + 1
dz
∣∣∣ 6 ∫

Ar

1

rN − 1
|dz| =

πr

rN − 1
,

which goes to zero as r↗∞, since N > 1. Thus

VN
def
=== lim

r↗∞

∫
Lr

1

zN + 1
dz = lim

r↗∞

∫
Dr

1

zN + 1
dz .

The only zeros of zN + 1 lie on the unit circle, and
so all r > 1 yield the same value for the righthand
integral. Thus its value is VN , i.e

VN =

∫
Dr

1

zN + 1
dz , for each r>1.

Henceforth, D denotes one of these contours; say,
D2 for specificity.

The poles. Let ω := ωN := cis(π/N). The N many
N th-roots of 1 are ω, ω3, ω5, . . . , ω2N−1. Those that
lie in the upper half-plane, i.e, those enclosed by D,
are in list

L = LN :=
{
ω, ω3, ω5, . . . , ωN−3, ωN−1} ,†:

recalling that N is even. These are the poles of 1
zN+1

that are enclosed by D.

Fix a pole p in this list and define

fp(z) :=
z − p

zN + 1
.

The contour integral on a contour C that goes around
only pole p is ∫

C

fp(z)

z − p
dz ,

which, by CIF, equals 2πi ·fp(p).
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Computing fp(p). We could factor zN + 1, but
simpler is to use l’Hôpital’s rule. Our fp(z) has a
removable discty at z=p, so

fp(p) = lim
z→p

z − p

zN + 1
l’H
=== lim

z→p

1

NzN−1
=

1

NpN−1
.

As pN = 1, our 1
pN−1 = p, thus fp(p) = p/N .

Adding over the poles. We’ve now shown that

VN =
2πi

N
·
∑
p∈L

p =
2π

N i
·
∑
p∈L

p .

Writing our even N as N=2H [H for Half] gives the
delightfully cheerful formula

VN =
π

Hi
·
∑

(LN ) .‡:

Interlude. Using Actual Numbers. . .

V2 =
π

1·i
·i = π .

V4 =
π

2i
·
[

i−1√
2

+ i+1√
2

]
= π

2i ·
2i√

2
= π/

√
2 .

V6 =
π

3i
·
[ i−
√

3
2 + i + i+

√
3

2

]
= π

3i ·2i =
2

3
π .

Computing
∑

(LN ). The poles of (†) can be
paired, allowing us to cancel out the cosines and ex-
press this sum ITOf sines. [Discussed in class. In partic-

ular, Λ =
[∫ π

0
sin
]

= 2.]
Alternatively, we can sum a finite geometric series.

Note that 1
ω ·L =

{
1, ω2, ω4, . . . , ωN−4, ωN−2

}
. Thus

∑(
1
ω · L

)
=

H−1∑
j=0

[ω2]j =
1− [ω2]H

1 − ω2
.

Recall that ω2H = ωN = 1, so∑
(L) = ω · 2

1 − ω2
= 2 · ω

1 − ω2
.

The reciprocal of ω
1−ω2 is 1−ω2

ω = 1
ω −

ω
1 = ω − ω;

this last, because ω is on the unit-circle. And ω − ω
equals 2i ·Im(ω), i.e, 2·Im(ω)/i . We get the nifty∑

(LN ) = i
/

Im(ωN ) = i
/

sin( π
N ) , thus

VN = 2 · π/N

sin(π/N)
.

22a′:

Easily, for θ 6 π
2 : As θ↘0, ratio θ

sin(θ) strictly de-

creases to 1. This proves that V2 > V4 > V6 > . . .
and that VN↘2.

Redoing, V6 = 2·π/61/2 = 2
3π, as before. To com-

pute V8, the half-angle (. . . that sin(θ)2 = 1
2
[1 − cos(2θ)])

formula tells us that sin(π8 ) =

√
2−
√

2
2 . Thus

V8 =
π

2 ·
√

2 −
√

2
.

This extended example hints at the power of the
residue-calculus. In particular, it handles all. . .

. . . Integrals
∫∞
∞

f(x)
q(x) dx with f and q poly-

nomials with Deg(q) − Deg(f) > 2, and q
having no real roots.

Example: Squared outside. Contemplate

Z :=

∫ ∞
∞

1

[x2 + 1]2
dx .22c:

As usual, the integral of f(z) := 1
[z2+1]2

over arc Ar
goes to zero as r↗∞, so Z =

∫
D f , where D := D2.

As i is the only upper half-plane singularity of f , we
have∫

D
f =

∫
D

g(z)

[z − i ]2
dz , where g(z) := [z + i ] 2 .

Thus Res(f, i) = g′(i)
1! = 2[z + i ] 3�z=i = 2

23i3 = 1
4i .

Hence, ∫ ∞
∞

1

[x2 + 1]2
dx = 2πi · 1

4i
=
π

2
.22c′:

Generalizing. For K a natnum, integral

ZK :=

∫ ∞
∞

1

[x2 + 1]K+1
dx22d:

equals
∫

D
g(z)

[z−i ]K+1 dz, where g(z) := [z + i ] [K+1].

Now Res(f, i) = g(K)(i)
K! . Doing the arithmetic yields∫ ∞

∞

1

[x2 + 1]K+1
dx = π ·

(2K
K

)
22K

.22d′:

This looks a lot like (21e′). Again, Hmm. . .
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Jordan’s Lemma

We need an estimate to show that certain integrals
are bounded on our Ar arcs. But first. . .

23a: Proposition. Fix T > 0. Then∫ π

0

∣∣exp(iT ·cis(θ))
∣∣ dθ 6 π

T
. ♦

Proof. Since sin() is convex-down on [0, π2 ], its graph
lies above the line-segment connecting (((0, 0))) to (((π

2 , 1))).
Thus

∀θ ∈ [0, π2 ]: sin(θ) >
θ

π/2
, so sin(θ) 6

2

π
· θ .†:

For S,B > 0, note
∫ B

0 e Sθ dθ = 1
S [1 − e SB]. Hence

∫ B
0 e Sθ dθ 6 1/S .‡:

Estimate. Since iT · cis(θ) = iT cos(θ)− T sin(θ)
and T is real, we have that∣∣exp(iT ·cis(θ))

∣∣ = exp( T sin(θ)) .

On interval [0,π], fnc sin() is symmetric about π
2 .

Thus∫ π

0

∣∣exp(i T ·cis(θ))
∣∣ dθ = 2

∫ π/2

0
exp( T sin(θ)) dθ

6 2

∫ π/2

0
exp

( 2T

π
θ
)

dθ ,

courtesy (†) and that T>0, as well as that exp() is
order-preserving on R.

Applying (‡) with B := π/2 and S := 2T
π now yields

that ∫ π

0

∣∣exp(i T ·cis(θ))
∣∣ dθ 6 2

/
2T
π

note
====

π

T
. �

23b: Jordan Lemma. Fix P > 0 and a fnc g() which
is continuous on the upper half-plane in C. For each
r>0, let Mr be the maximum of |g| on Ar. Then every
radius r>0 satisfies∣∣∣∫

Ar
eiPz · g(z) dz

∣∣∣ 6 π

P
·Mr .U: ♦

Pf. Note LhS(U) 6
∫

Ar
|eiPz| ·Mr |dz|. So ISTShow

that ∫
Ar
|eiPz| |dz|

?
6
π

P
.

CoV z = reiθ note
==== r cis(θ) has dz

dθ = ireiθ. Thus,∫
Ar

∣∣eiPz
∣∣ |dz| =

∫ π

0

∣∣exp(iPr·cis(θ))
∣∣ · ∣∣ireiθ

∣∣ dθ
= r ·

∫ π

0

∣∣exp(iPr·cis(θ))
∣∣ dθ 6 r · π

Pr
.

This last inequality is courtesy Proposition 23a applied
with T := P ·r. �

Appl. of Jordan Lemma. Consider

Y :=

∫ ∞
∞

x · sin(x)

x2 + 1
dx .23c:

The difference in the degrees of the denominator poly,
x2 + 1, and numer poly, x, is only 1. The positive and
negative parts of the integrand each have infinite in-

tegral, hence
∫∞
∞
∣∣x·sin(x)
x2+1

∣∣ dx = ∞; so the oscillations

of sin() are crucial for convergence of (23c).
Fixing an r > 1, we seek to compute

Yr :=

∫ r

r

x · sin(x)

x2 + 1
dx .

Note
∫ r
r
x·cos(x)
x2+1

dx is zero, since cos() is an even fnc.
Thus Yr equals∫ r

r

x ·
[
sin(x)− icos(x)

]
x2 + 1

dx = i

∫ r

r

x · eix

x2 + 1
dx .

Thus we’ll have

Y = i lim
r↗∞

∫
Dr

z · eiz

z2 + 1
dz∗:

if we can show that the contribution on arc Ar goes
to zero.

Applying Jordan’s Lemma (23b) with g(z) := z
z2+1

and P = 1, gives

∣∣∣∫
Ar

z · eiz

z2 + 1
dz
∣∣∣ 6 π · r

r2 − 1
.

This goes to zero as r↗∞. So Y equals i
∫

D
z· eiz

z2+1
dz

where D is, say, D2, since D2 encloses all the upper
half-plane singularities of the integrand.
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Applying CIF to f(z) := z · eiz/[z + i ] gives∫
D

f(z)

z − i
dz = 2πi · f(i) = 2πi · i · ei i

[i + i ]
= i ·π

e
.

So (∗) says ∫ ∞
∞

x · sin(x)

x2 + 1
dx =

π

e
.23c′:

Now that is pretty dang Cool!

Keyhole contours, 3

Some definite integrals can be neatly computed using
a keyhole contour. Here is an example:

Let K be the contour along R from 1/r to r, then
CCW circle Sphr(0), then along R from r to 1/r,
and finally CW circle Sph1/r(0).

Call the 1/r to r line-segment Lr. Call the r to 1/r
line-segment L̃r; we need a different name because we
will be integrating fncs with a branch-point at 0, and
we have gone around that branch-point.

Computing Γ. Let’s use our K to compute

Γ :=

∫ ∞
0

√
x

x2 + 1
dx24:

With f(z) :=
√
z

z2+1
, observe that∫

L̃r
f = −[ 1] ·

∫
Lr
f .

The negative-sign is because we traverse L̃r in the
opposite direction from Lr. The [ 1] is what a square-
root is multiplied-by, when we circle CCW once
around the branch-point. Because of the form of our
f , its value is multiplied by [ 1] when circumnavigat-
ing the branch-point.

Easily the f -integral along the circles of radius r
and 1/r go to zero as r↗∞. So

lim
r↗∞

∫
Kr
f = lim

r↗∞

[∫
Lr
f +

∫
L̃r
f
]

= lim
r↗∞

2

∫
Lr
f = 2Γ .

The singularities of f are at ±i . They are enclosed
by K := K2, whence

2Γ =

∫
K
f = 2πi ·

[
Res(f, i) + Res(f, i)

]
.∗:

Let � mean a finite-value that we don’t need to com-
pute, because it will be multiplied by zero.

We could just factor z2 + 1 and use CIF, but let’s
compute the residues at these order-1 poles. So
Res(f, i) equals

lim
z→i

[z − i ]f(z) = lim
z→i

[z − i ]
√
z

z2 + 1

L’H
=== lim

z→i

1·
√
z + [z − i ]�

2z
=

α

2i
,

where α is the sqroot of i for this branch of
√
· .

Similarly, Res(f, i) equals

lim
z→ i

[z + i ]
√
z

z2 + 1
L’H
=== lim

z→ i

1·
√
z + �
2z

=
β

2i
,

where β is the sqroot of i for this branch of
√
· fnc.

Computing the sqroots. For this branch of
√
· ,

our α = i+1√
2

and β = i−1√
2

, whence α− β = 2√
2

. So

from (∗),

Γ = πi ·
∑

Res = πi · α− β
2i

=
π√
2
.24′:

Cube-root. Our K also applies to

Ω :=

∫ ∞
0

x1/3

x2 + 1
dx25:

Let g(z) := z1/3

z2+1
. As before,∫

L+L̃

g = [1 − M ] ·
∫
L

g ,

where M is what a cube-root is multiplied-by, when
we circle CCW once around the branch-point. Be-
cause the form of our g, its value is multiplied by M .
Here, M = 1

2 [i
√

3 − 1], the cube-root of 1 that cir-
cumnavigation brings us to. Looking ahead,

1−M = 1
2 [3− i

√
3] =

√
3

2 · [
√

3 − i ] .†:

As before, the g-integral on the circles dies off, so

[1−M ] · Ω = [1−M ] ·
∫

L∞
g

note
====

∫
K
g .‡:
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Computing residues. Our Res(g, i) equals

lim
z→i

[z − i ]g(z) = lim
z→i

[z − i ] · z1/3

z2 + 1

L’H
=== lim

z→i

1·z1/3 + �
2z

=
α

2i
,

where α is the cube-root of i for this branch of 3
√
· .

Similarly, Res(g, i) equals limz→ i [z + i ]g(z), i.e

lim
z→ i

[z + i ] · z1/3

z2 + 1
L’H
=== lim

z→ i

1·z1/3 + �
2z

=
β

2i
,

where β is the cube-root of i for this branch of 3
√
· .

Here, α = 1
2

[√
3 + i

]
and β = i , so α− β equals

1
2

[√
3 − i

]
. Consequently,∫

K
g = 2πi ·[

∑
Res] = 2πi ·α− β

2i
=
π

2
·
[√

3 − i
]
.

Thus
π

2
·
[√

3 − i
] by (‡)

===== [1−M ]Ω

by (†)
=====

√
3

2
·[
√

3 − i ]Ω .

I.e, π
2 =

√
3

2 Ω. So

Ω =
π√
3
.25′:

The power of contour-integration, At Your Service!

Four failures

Part of understanding a technique is when it doesn’t
apply, or when it needs to be modified.

Consider

Y1 :=

∫ ∞
0

5 +
√
x

x2 + 1
dx .

In going around the branch-point, we multiply
√
z

by 1, but that doesn’t multiply the integrand by 1,
as 5 is unchanged. In this instance, we could write Y1

as a sum
[∫∞

0
5

x2+1
dx
]

+
[∫∞

0

√
x

x2+1
dx
]

and compute

each integral separately.

Now consider

Y2 :=

∫ ∞
0

sin(5 +
√
x )

x2 + 1
dx .

Going around the branch point, we multiply
√
x

by 1, but not 5, and so what happens to sin(5 +
√
x)

is complicated. It is unclear how to proceed. [Does the

formula for the sine of a sum, help?]

Our third example is

Y3 :=

∫ ∞
0

sin(
√
x)

x2 + 1
dx .

In going around the branch point, we multiply
√
x

by 1. This happens to multiply sin(
√
x) by 1, since

sin() is an odd fnc, but it is important to understand
why the technique still works in this instance.

Our fourth example is the innocuous

Y4 :=

∫ ∞
0
h , where h(z) :=

cos(
√
z )

z2 + 1
.

Here, the method fails in a novel way.
Going around the branch point multiplies

√
z by 1.

Since cos() is even, this leaves cos(
√
x) unchanged.

Thus ∫
D
h =

∫
L+L̃

h = [1− 1]

∫
L
h = 0 · Y4 .

Unsurprisingly,
∫

Dh will be zero, yielding the useless
eqn 0 = 0 ·Y4, giving no information about Y4.
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Applications of Rouché’s thm

Rouché’s thm can be viewed as a special case of The
Argument Principle.

26: Rouché’s Thm. Consider SCC C. Suppose both
α() and β() are analytic on Ĉ, and |α| > |β| on C.
Then

α and α+β have the same number of zeros
[counted with multiplicity] in C̊.

Note α and α−β also have the same number of zeros,
in C̊, since |α| > | β| on C. ♦

For real number K, a z-expression E=α(z) and
an arbitrary set C, let an expression such as
“|E|C > K” or “|α|C > K” or “

∣∣α()
∣∣
C
> K” mean

that ∀z ∈ C :
∣∣α(z)

∣∣ > K.

27: Ex. R1.

Soln R1.

28: Ex. R1.

Soln R1.

29: Ex. R4. Fix real M>0 and T>2. Prove that

Mz3 − z + T = [z + 2] · e z30:

has precisely 2 solns in H := {z | Re(z) > 0}. �

Soln R4. We will use α(z) := Mz3 − z + T
and β(z) := [z + 2] · e z. When Re(z) > 0, note∣∣β(z)

∣∣ 6 |z + 2|, since |e z| 6 |e0| = 1.
For z = iy on the imaginary axis, note α(iy) equals

iy3M − iy + T . Since y3M and y have the same
sign, ∣∣α(iy)

∣∣ > |iy + T | > |iy + 2| ,

since T>2 is real, hence orthogonal to iy. Thus

On the imaginary axis, |α| > |β|.†:

[This argument needed the strict T>2. For if T=2, then

|α(0)| = |β(0)|.]

The contour. For r>0, let Ar be the radius-r
semicircle from ir through r to ir.

For r > 1
M , note Mr3 − r − 2 > r2 − r − 2. For

z ∈ Ar, then, |α(z)| > r2 − r − 2.
If also r > 4, then r2 > 4r. Hence

r2 − r − 2 > 3r − 2 > 2r > r + 2 > |β(z)| ,

for z ∈ Ar. Consequently,

For r>Max(4, 1
M ), we have |α| > |β| on Ar.‡:

For such r, then, our (†,‡) guarantee that |α| > |β|
on contour Dr, where Dr is arc Ar glued to the line-
segment from ir to ir. Sending r↗∞, then,

In half-plane H, expression [z + 2] · e z has the
same number of zeros as polynomial α(z).

�

Counting roots of α(). As x↘ ∞, remark that
α(x)→ ∞. Yet α(0) = T > 0. So IVT (Intermediate

Value Thm) implies α() has a negative real-root.

Unfinished: as of 9May2017
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Notation Appendix

Use ∈ for “is an element of”. E.g, letting P be the
set of primes, then, 5 ∈ P yet 6 /∈ P. Changing the
emphasis, P 3 5 (“P owns 5”) yet P 63 6.

For subsets A and B of the same space, Ω, the
inclusion relation A ⊂ B means:

∀ω ∈ A, necessarily B 3 ω.

And this can be written B ⊃ A. Use A $ B for proper
inclusion, i.e, A ⊂ B yet A 6= B.

The difference set B r A is {ω ∈ B | ω /∈ A}. Em-
ploy Ac for the complement Ω rA. Use A 4 B for
symmetric difference [ArB] ∪ [B rA]. Further-
more

Au•B , Sets A &B have at least one point in
common; they intersect.

A uB , The sets have no common point; dis-
joint.

The symbol “Au•B” both asserts intersection and
represents the set A ∩B. For a collection C = {Ej}j
of sets in Ω, let the disjoint union

⊔
j Ej or

⊔
(C)

represent the union
⋃
j Ej and also assert that the

sets are pairwise disjoint.
For fncs on a set Ω, each subset B ⊂ Ω has its cor-

responding “indicator function of B”, written 1B.
It is the fnc Ω→{0, 1} which sends points in B to 1
and points in ΩrB to 0. [So 1A + 1{(A) is constant-1.]
E.g, 1Primes(5) = 1, and 1Primes(9) = 0.

General Appendix

The discriminant of quadratic [i.e, A 6=0] polyno-
mial q(z) := Az2 +Bz + C is

Discr(q) := B2 − 4AC .31.1:

The zeros [“roots”] of q are

Roots(q) =
1

2A

[
B ±

√
Discr(q)

]
.31.2:

Hence when A,B,C are real, then the zeros of q form
a complex-conjugate pair. And q has a repeated root
IFF Discr(q) is zero.

A monic R-irreducible quadratic has form

q(x) = x2 − Sx+ P = [x− Z] · [x− Z] ,31.3:

where Z ∈ CrR. Note S = Z + Z = 2Re(Z) is the
Sum of the roots. And P = Z · Z = |Z|2 is the Prod-
uct of the roots. The discriminant of g, Discr(g),
equals

S2 − 4P
note
==== [Z − Z]2 = −4·[Im(Z)]2 .31.4:

Completing-the-square yields

q(x) =
[
x− S

2

]2 + F 2, where F := |Im(Z)| ,31.5:

which is easily checked. [Exercise]

Abbreviations. Use posreal for “positive
real number”. A sequence ~x abbreviates
(((x1, x2, x3, . . .))). Use TailN (~x) for the subsequence
(((xN , xN+1, xN+2, . . .))) of ~x. �

32a: Addition-Cts thm. The addition opera-
tion C×C→C is continuous. Restated: Suppose
~x, ~y ⊂ C with lim(~x) = α and lim(~y) = β. With
pn := xn + yn, then, lim(~p) = α+ β. ♦

Proof. Fix a posreal ε. Take N large enough that

TailN (~x) ⊂ Bal ε
2
(α) and TailN (~y) ⊂ Bal ε

2
(β) .

Each index k has pk − [α+ β] = [xk − α] + [yk − β].
For each k > N , then,∣∣pk − [α+ β]

∣∣ 6 |xk − α|+ |yk − β| 6 ε
2 + ε

2 = ε .�

Remark. The same thm and proof hold for addition
on a normed vectorspace; simply replace |·| by the
norm ‖·‖. �

Abbreviations. Use WELOG for “without essential
loss of generality”, and posint for “positive integer”.

A sequence ~x abbreviates (((x1, x2, x3, . . .))). Use
Diam(~x) for the diameter of the set {xn}∞n=1. �

32b: Mult-Cts thm. The multiplication operation
C×C→C is continuous. Restated: Suppose ~x, ~y ⊂ C
with lim(~x) = α and lim(~y) = β. With pn := xn · yn,
then, lim(~p) = α · β. ♦

Filename: Problems/Analysis/Calculus/complex-notes.jk.latex



Prof. JLF King General Appendix Page 21 of 29

Proof.WELOG |β| 6 7. Since ~x converges, necessarily
the Diam(~x) is finite; WELOG

∀ posints n: |xn| 6 50 .†:

For each posint n, adding and subtracting a term
gives

xnyn − αβ = xnyn − xnβ + xnβ − αβ
= xn[yn − β] + [xn − α]β .

Taking absolute-values, then upper-bounding, yields

|xnyn − αβ| 6 |xn| · |yn − β| + |xn − α| · |β|‡:
6 50 · |yn − β| + |xn − α| · 7 ,

by (†) and the first sentence.
Fix a posreal ε. Since lim(~y) = β and lim(~x) = α,

we can take K large enough that for each n in
[K ..∞):

|yn − β| 6
ε/2

50
and |xn − α| 6

ε/2

7
.

Plugging these estimates in to (‡) gives that

|xnyn − αβ| 6 50 · ε/250 + ε/2
7 · 7

note
==== ε ,

for each n > K.
As this holds for every ε positive, lim(~x · ~y) indeed

equals αβ. �

33: Non-neg Lemma. On interval J := [a, b] suppose
continuous function h satisfies h > 0. If

∫ b
a h(t) dt is

zero, then h() is identically zero.
On a closed contour C ⊂ C, suppose a continuous

g:C→R is non-negative; g() > 0. If the arclength
integral ∫

C
g(z) | dz|

is zero, then g is identically-zero on C. ♦

Pf for h. FTSOC, suppose ∃p ∈ J with 3ε := h(p)
positive. Cty of h at p says there exists an interval
I 3 p of positive length, so that every x ∈ I satisfies∣∣h(x)− h(p)

∣∣ 6 ε ;

hence h(x) > 3ε− ε = 2ε. But h() is non-negative
on J , so∫

J
h >

∫
I
h >

∫
I

2ε = 2ε · Len(I) .

This latter is positive, yielding a contradiction. �

Pf for g. Let z:[0, 1]→C be a [cts, piecewise smooth]
parametrization of C. Then h(t) := g

(
z(t)

)
is cts and

non-negative. By above, h ≡ 0 whence g ≡ 0. �
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Sufficient condition for differentiability

Consider an open subset U ⊂ RN and a map
h:U→R. Use abbreviation ~x for the N -tuple
~x := (((x1, x2, . . . , xN))), a point in RN . Let hj mean
dh
dxj

, that is, the partial-derivative of h() w.r.t its

jth argument. Finally, have ‖·‖ denote the usual

Euclidean norm on RN :
∥∥~x∥∥ :=

√∑N
j=1 |xj |2 .

34: Thm. Fix a point ~c ∈ U . Suppose all partial-
derivs h1, . . . , hN are defined in a nbhd of ~c, and are
each continuous at ~c. Then h is differentiable at ~c.♦

Proof. Without loss of generality, ~c = ~0. [Rename

hNew(~x) := h(~x− ~c), and translate U .]
WLOG, h(~0) = 0. [Rename hNew(~x) := h(~x)− h(~0).]
WLOG, ∀j, partial-deriv hj(~0) is zero. Why? Re-

name

hNew(~x) := h(~x) −
N∑
j=1

[
hj(~0) · xj

]
.

Now that all the partials are zero at the origin, dif-
ferentiability at the origin is can be stated thusly:

For all ε>0, there exists δ>0 so that each

~p ∈ U with 0< ‖~p‖<δ, satisfies |h(~p)|
‖~p‖ < ε.

Of course, the “<ε” can be replaced by any zero-
going fnc of ε, so ISTProduce a δ such that:

For all ε>0, ∃δ>0 so that each ~p ∈ U with

0< ‖~p‖<δ, has |h(~p)| < ε ·KN ·‖~p‖,
Goal:

for some positive constant KN ; that is, does not de-
pend on ε, nor on ~p.

Continuity at ~0. Cty of the partials at ~0 admits
a δ>0 small enough that the open ball B := Balδ(~0)
has this property:

For each j = 1, . . . , N and ∀~x ∈ B, we have
that ∣∣hj(~x)

∣∣ note
====

∣∣hj(~x)− hj(~0)
∣∣ < ε.

†:

Using MVT. Fix an ε>0, and consider a point ~p∈B.
We’ll apply MVT at each index j for which pj 6= 0; so
for notational simplicity, assume every j has pj 6= 0.

For k = 0, 1, . . . , N define

~y〈k〉 :=
(((
p1, . . . , pk,

N−k︷ ︸︸ ︷
0, 0, . . . , 0

)))
.

And for j = 1, . . . , N , let Sj denote the line-segment
from ~y〈j−1〉 to ~y〈j〉.

As
∥∥~p∥∥ > ∥∥~y〈j〉∥∥, each ~y〈j〉 ∈ B. Hence, since ball

B is convex, each line-segment lies in B.
Apply the MVT to h�Sj ; that is, to h restricted

to Sj . Our MVT guarantees a point, call it ~xj , in Sj
st. ∣∣hj(~xj)∣∣ =

∣∣h(~y〈j〉) − h
(
~y〈j−1〉)∣∣∥∥~y〈j〉 − ~y〈j−1〉

∥∥ .

Note
∥∥~y〈j〉 − ~y〈j−1〉∥∥ is simply |pj |. And

∣∣hj(~xj)∣∣<ε,
courtesy (†), since ~xj ∈ Sj ⊂ B. Consequently,∣∣h(~y〈j〉) − h

(
~y〈j−1〉)∣∣ 6 ε · |pj | .

Using the Triangle Ineq., summing over j = 1, . . . , N
yields that

∣∣h(~y〈N〉) − h
(
~y〈0〉

)∣∣ is upper bounded by

ε ·
∑N
j=1 |pj |. By defn, ~y〈N〉 = ~p and ~y〈0〉 = ~0, so

|h(~p)| < ε ·
∑N

j=1
|pj | ,‡:

where we have used that h
(
~y〈0〉

)
is zero.

Lastly, each |pj | =
√
|pj |2 6 ‖~p‖. Summing over j

gives
∑N
j=1 |pj | 6 N · ‖~p‖. This and (‡) together,

yield (Goal) with KN := N . �

34a: Remark. The purists among you can use Jensen’s
Inequality [or Hölder’s Inequality] to conclude the stronger∑N
j=1 |pj | 6

√
N · ‖~p‖. [For the above proof, however,

this improvement is irrelevant.] �
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Cauchy-Goursat for a rectangle

Here, a rectangle has form

R =
{
x+ iy

∣∣ x ∈ [a .. b] and y ∈ [c .. d]
}

where a < b and c < d. Let ∂R denote the boundary
of R, both as a set and as a SCC, and let

IR :=

∫
∂R

f(z) dz .

Note that
∫
∂R 1 dz and

∫
∂R z dz are each zero, since

fncs [z 7→1] and [z 7→z] each have an antiderivative. So
for arbitrary constants J,K,L, we have that∫

∂R
f(z) dz =

∫
∂R

[
[f(z)− J ] − [z −K]L

]
dz.35a:

Splitting. Rectangle R splits into 4 congruent sub-
rectangles, A,B,C,D each with half the width and
height of R. Note

IR = IA + IB + IC + ID ,

since each internal edge is traversed twice, once in
each direction, cancelling. Hence

|IR| 6 |IA| + |IB| + |IC | + |ID| .

So at least one of the subrectangles has its abs-value
at least as large as 1

4 |IR|. Pick one according to some
definite rule (e.g, first one in CCW order) and call it R′.

Pf of C-G for a rectangle. Consider a rectangle R0

and a fnc f holomorphic on R̂0. Use the preceding
paragraph to define a sequence of rectangles

R0 ⊃ R1 ⊃ R2 ⊃ . . .†:

by Rn+1 := R′n. Since |IRn | 6 1
4 |IRn+1 |, induction

gives

|IR0 | 6 1
4n · |IRn | .‡:

Letting Dn and Pn denote the diameter and perimeter
of Rn, note

Dn = 1
2n ·D0 and Pn = 1

2n ·P0 .∗:

The intersection point. The rectangles are closed
and bounded, and nested, so they converge to a point;
call it q. [Point q could be on ∂R0, which is fine.]

For future reference: Given an arbitrary rectan-
gle R, we can replace the constants J,K,L in (35a)
by f(q), q and f ′(q), respectively, to get

IR =

∫
∂R

[
f(z)− f(q) − [z−q]f ′(q)

]
dz .35b:

Using differentiability. Fix an ε>0. Since f is
differentiable at q, there exists δ>0 so that every z
with 0 < |z − q| < δ satisfies∣∣∣f(z)− f(q)

z − q
− f ′(q)

∣∣∣ 6 ε .

Multiply by z−q, then take abs.values, to get∣∣∣f(z)− f(q) − [z−q]f ′(q)
∣∣∣ 6 ε ·

∣∣z−q
∣∣ ,35c:

and this latter holds also for z = q, hence holds for
all z in Balδ(q).

Picking index K. The rectangles of (†) all own q,
and their diameters shrink to zero, so we can choose
an K large enough that RK ⊂ Balδ(q).

Now (35b) and the Triangle-Ineq-for-Integrals gives
that

|IRK
| 6

∫
∂RK

∣∣∣f(z)− f(q) − [z−q]f ′(q)
∣∣∣ · | dz| .

Courtesy (35c), then,

|IRK
| 6 ε ·

∫
∂RK

∣∣z−q
∣∣ · | dz| .

Each
∣∣z−q

∣∣ 6 DK , so

|IRK
| 6 εDK

∫
∂RK

|dz| = ε ·DK · PK .

Multiplying by 4K , our (∗) and (‡) produce

|IR0 | 6 ε ·D0 · P0 .‡‡:

Happily, the RhS goes to zero as ε↘0. �
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Radius of Convergence

Series notations. Customs about how “series” is used
in the context of “convergence of a series” are a bit
strange. A “series ~e” is a sequence ~e = (((ek)))

∞
k=0,

but♥5 where the word “series” hints to the reader
our interest in its sum

∑
(~e). This sum is the limit

–when it exists– of the corresponding “partial-sum
sequence” ~s, where

sN :=
∑

k∈[0 .. N)

ek36:

Use
�� ��~s = PΣ(~e) to indicate this partial-sum relation

between sequences. Phrase “series ~e is convergent”
means that lim(~s) exists and is finite. So

∑
(~e) :=

lim(~s).

To clarify, the nth partial sum means the sum of
the first n terms, regardless of the initial index. For
example, suppose ~b = (((b`)))

∞
`=5, and ~e = PΣ(~b). Then

e3 = b5+b6+b7, and e0 = 0.

Example: Let ~b := (((k2 )))
∞
k=1 and ~a := PΣ(~b). Then

an = 1
6 ·[2n

3 + 3n2 + n]. �

37: Root-test lemma. Given a series ~e ⊂ C, define

Λ := limsup
n→∞

n

√
|en|

note
∈ [0, ∞] .∗:

If Λ < 1 then ~e is an absolutely-convergent series.

If Λ > 1 then ~e is “magnificently divergent” Not
only |en| 6→ 0, but indeed limsup

n→∞
|en| = ∞. ♦

Proof. Let an := |en|,�� ��Case: When Λ < 1. ISTShow that ~a is a con-
vergent series. Pick ρ with Λ < ρ < 1. Take K
large enough that supn>K n

√
an 6 ρ. Hence∑

n>K
an 6

∑
n>K

ρn <∞. And
∑

n∈[1 ..K]
an <∞.

�� ��Case: When Λ > 1. Pick ρ with 1 < ρ < Λ.
By (∗), the set J :=

{
n
∣∣ n
√
an > ρ

}
is infinite. And

each n ∈ J has an > ρn. �

♥5The index will usually start at zero, but it doesn’t have to.
The sequence ~e might be (((ek)))

∞
k=24, or (((ek)))

∞
k= 5.

A function f :R→R is eventually positive if�� ��∃K s.t ∀x > K: f(x) > 0 . Thus a degree-k poly,

f(x) := Ckx
k + · · ·+ C1x+ C0 ,

is eventually positive IFF f has positive leading-
coeff, Ck > 0.

Power-series notation. A sequence ~c ⊂ C and point
Q ∈ C determine a power series

PS~c,Q(z) :=
∑∞

n=0
cn · [z −Q]n .38a: �

From the notation we sometimes drop the the cen-
ter of expansion, just writing PS~c. This is especially
true when the center of expansion is 0∈C.

Use “PS” to abbreviate the phrase “power series”.
Use McS to abbrev Maclaurin Series; a PS centered
at Q=0. E.g McS~c(z) =

∑∞
n=0 [cn · zn].

Radius of Convergence. The set of z ∈ C for
which RhS(38a) converges is called the “set-of-con-
vergence ”. We write it SoC(~c, Q)

It will turn out that the SoC comprises an open
ball, possibly of radius 0 or ∞, together with some
of the points on the boundary of this ball. This open
ball of convergence is written BoC(~c, Q). Its radius
is the radius of convergence of RhS(38a), and is
written RoC(~c).♥6 So R := RoC(~c) is always a value
in [0, ∞], and BoC(~c, Q) = BalR(Q). �

38b: RoC Lemma (Cauchy, 1821. Hadamard, 1888.) Con-
template power series PS~c,Q, as in (38a). Let

Ω := limsup
n→∞

n

√
|cn|

note
∈ [0, ∞].

Then RoC(~c) = 1/Ω where, here, we interpret 1
0 as ∞

and 1
∞ as 0. ♦

Proof sketch. Set an := |cn|. ISTConsider convergence
at a non-negative x∈R. Applying the Root-test,

limsup
n→∞

n

√∣∣cnxn∣∣ = limsup
n→∞

[x · n
√
an ]

= x · limsup
n→∞

n
√
an = x · Ω =: Λ .

So Λ is less/greater than 1, as x is less/greater
than 1

Ω . �

♥6The argument to RoC is a sequence. So we can write
the RoC of PS f(x) :=

∑∞
n=0 n

2xn as RoC(n 7→ n2), but not
as RoC(n2). nor as RoC(f).
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39: Three examples. [Aside: For fncs on a set Ω,
each subset B ⊂ Ω has its corresponding “indicator
function of B”, written 1B. It is the fnc Ω→{0, 1}
which sends points in B to 1 and points in ΩrB to 0.
[So 1A + 1{(A) is constant-1.] E.g, 1Primes(5) = 1, and
1Primes(9) = 0. ]

Let’s apply the above (38b). Define

P := Primes; D := Odds; S := {1 + n2 | n∈N} .

Consider this power series:

∞∑
n=0

3n·1P(n) · xn = 9x2 + 27x3 + 243x5 + . . . .39a:

Its RoC is 1/3, since there are ∞ly many primes.

A funkier PS, centered at 8, is∑∞
k=0

[
3k·1D(k) + 4k·1S(k)

]
· [x− 8]k .39b:

Since n
√

3n + 4n
n→ 4, and |S| =∞, the RoC is 1

4 .

Even more interesting is this PS:∑∞
n=0

[
5n·1P(n)·1S(n)

]
· xn .39c:

As of March2017, its RoC is unknown. If there are
∞ly many primes♥7 of form 1 + n2 (conjectured, but

unproven) then RoC = 1
5 ; otherwise RoC = ∞, and

the PS is a polynomial. �

40: Lemma. For each K ∈ R: limx↗∞
x√
xK = 1.

Moreoever, for each rational function h() := p()
q()

which is eventually positive, lim
n↗∞

n
√
h(n) = 1.

Proof. Use L’Hôpital’s rule. Etc. ♦

41: Same-RoC lemma. Consider a sequence ~c =
(((c0, c1, . . .))) ⊂ C, and let R := RoC(~c). For each
natnum K, and for each rational function g 6= Zip,
these coefficient sequences

i : (((0, K. . . , 0, cK , cK+1, cK+2, . . .)))

ii : (((cK , cK+1, cK+2, . . .)))

iii :
(((
g(n)·cn

)))∞
n=0

give rise to power-series with RoC = R. ♦

♥7For the curious, see Wikipedia on Landau’s problems.

Proof sketch. Parts (i) and (ii) follow from (38b).
Part (iii) follows from (40) and (38b). �

42: Diff/Integrate a PS. We differentiate and inte-
grate, term-by-term, the G := PS~c,0 power-series:

F (x) =
∑∞

j=1
bj ·xj , where bj := 1

j
· cj−1.

G(x) =
∑∞

k=0
ck·xk .

H(x) =
∑∞

`=0
d`·x`, where d` := [`+1]·c`+1.

42a:

Lemma (41) tells us that the three PSes have the
same RoC.

Observe that PS~d is the term-by-term derivative
of PS~c. And PS~b is the term-by-term integral of PS~c.
Does the same relation hold between the functions
that these PSes determine? �

42b: Term-by-term PS Theorem. Given a sequence
~c ⊂ R, define sequences/fncs ~b, ~d, F,G,H by (42a)
and let R := RoC(~c). Then

RoC(~b) = R = RoC(~d) .†:

With B := BoC(~c), moreover,

∀z ∈ B: F (z) =

∫ z

0
G .‡:

And G is in C∞(B→R), with G′ = H. ♦

42c: Coro. Suppose PS G(x) :=
∑∞
j=0 cj ·[x−Q]j has

positive RoC. Then this PS is the Taylor series of G,
centered at Q. ♦

Pf of (42b). We’ll establish that G′=H; the inte-
gral result (‡) follows analogously. ISTo fix a pos-
real ρ < R, let U := Balρ(0), and prove G′=H
when restricted to U . We will apply the DUC Thm
(Derivative uniform-convergence) from notes-AdvCalc.pdf
to these fncs (defined only on U)

fn(x) :=
∑

j∈[0 .. n]
cjx

j .

By definition of coeff-sequence ~d from (42a),

f ′n(x) =
∑

k∈[0 .. n)
dkx

k .
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In order to show that seq (((f ′n)))
∞
n=1 is sup-norm Cauchy,

pick a number V with ρ < V < R.
Now 1

V > limsup
n→∞

n
√
|dn| since, by (41), RoC(~d)

equals R. Thus there is an index K with

∀n > K: n

√
|dn| < 1

V .

We henceforth only consider indices n dominating K.
For each k > n, then,

|dk| 6 1/V k .42d:

Sup-norm. For x ∈ U and indices `>n,

f ′`(x)− f ′n(x) =
∑

k∈[n .. `)
dkx

k .

From (42d), then,∣∣f ′`(x)− f ′n(x)
∣∣ 6 ∞∑

k=n

|x|k

V k
.

Since U owns x,∣∣f ′`(x)− f ′n(x)
∣∣ 6 ∞∑

k=n

ρk

V k
=
[ ρ
V

]n · C ,
where C is the positive constant 1/[1− ρ

V ].
Taking a supremum over all x ∈ U yields∥∥f ′` − f ′n∥∥ 6 [ ρ

V

]n · C ,42e:

for each pair ` > n > K. Sending n ↗ ∞ sends
RhS(42e)→ 0.

The limit limn fn(0) exists, equaling c0. Now apply
the DUC Thm. �

A power-series with a new center. We show
that a function defined by a PS is analytic in its entire
ball-of-convergence.

43: The setting. We have a point P ∈ C and a
sequence ~a ⊂ C such that α ∈ (0, ∞], where α :=
RoC(~a). This engenders a C∞-fnc from Balα(P )→C,
by

F(z) :=
∑∞

k=0
ak· [z − P ]k .43a:

Fix a new center Q∈C with |Q− P | < α. Thus

β ∈ (0, ∞], where β := α− |Q− P |.
Moreoever, Balβ(Q) ⊂ Balα(P ).

43b: �

44: New-center theorem. Take P,Q, α, β,~a and ~b
from (43). For each natnum k, this summation is
absolutely convergent:

bk :=
∑∞

N=k
aN ·

(N
k

)
·QN−k ∈ C .44a:

Moreoever, RoC(~b) > β > 0. This value

G(z) :=
∑∞

k=0
bk· [z −Q]k ,44b:

agrees with F(z), for each z ∈ Balβ(Q).44c:

Lastly, for each natnum k,

bk = 1
k! · F

(k)(Q) .44d:

In other words, RhS(44b) is the Taylor series for F ,
centered at Q. ♦

Proof. WLOG P = 0. Fix a point Z ∈ Balβ(Q).
Writing Z = Q+ [Z −Q], its N th-power is

ZN =
∑N

k=0

(N
k

)
·QN−k · [Z −Q]k .

Thus, since Z ∈ Balα(P ),

f(Z) =
∑∞

N=0
aN · ZN

=
∞∑
N=0

N∑
k=0

aN ·
(N
k

)
·QN−k·[Z −Q]k︸ ︷︷ ︸

hN,k

.

This is a sum, in a certain order, over the
set H :=

{
(((N, k))) ∈ N×N

∣∣ N > k}. We need this
sum to be absolutely convergent. The sum∑∞
N=0

∑N
k=0 |hN,k| equals

∞∑
N=0

N∑
k=0

|aN |·
(
N
k

)
·|Q|N−k·|Z −Q|k =

∞∑
N=0

|aN |·Y N ,∗:

where Y := |Q|+ |Z −Q|. From Z ∈ Balα(0)
and (43b), we conclude that Y < α. From the proof
of Root-test lemma (37, P.24), the righthand side of (∗)
is finite.

Since S :=
∑∞
N=0

∑N
k=0 |hN,k| is finite, we can re-

verse the order of summation and conclude that

S =
∞∑
k=0

∞∑
N=k

|hN,k|

=
∞∑
k=0

[ ∞∑
N=k

|aN |·
(N
k

)
·|Q|N−k

]
· |Z −Q|k .
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We could have chosen our Z 6=Q, thus allowing divi-
sion by |Z −Q|k. Hence, each bracketed sum is finite.
So each sum in (44a) is absolutely convergent, and we
have a well-defined number bk.

For a general Z ∈ Balα(0), reversing the original
sum gives

f(Z) =
∞∑
k=0

∞∑
N=k

hN,k

=
∞∑
k=0

[ ∞∑
N=k

aN ·
(N
k

)
·QN−k

]
· [Z −Q]k ,

which equals
∑∞
k=0 bk · [Z −Q]k.

Establishing (44d). Corollary 42c tells us that

k! · bk
by (42c)
====== G(k)(Q)

by (44c)
====== F (k)(Q) . �

45: Prop’n. Power-series

F(z) :=
∑∞

n=0
an·[z −Q]n∗:

has positive RoC. Suppose ~y is a sequence of distinct
complex numbers converging to Q, such that

∀j ∈ Z+: F(yj) = 0 .

Then ~a is all-zero, and F is the zero function. ♦

Proof. WLOG, each yj 6= Q. FTSOC, suppose ~a 6= ~0;
let L be the smallest index with aL 6= 0. Formally
dividing (∗) by [z −Q]L gives PS

G(z) :=
∑∞

k=0
bk·[z −Q]k ,

where each bk := aL+k. Since each yj−Q 6= 0,

G(yj) = F(yj)/[yj −Q]L = 0 .

But RoC(~b) = RoC(~a) > 0, so G is cts in a nbhd of Q,
and thus G(Q) = lim

(
G(~y)

)
= 0. This contradicts

that G(Q) = b0 = aL 6= 0. �

46: PS Uniqueness Thm. Imagine power-series

F(z) :=
∑∞

n=0
an· [z − P ]n and

G(z) :=
∑∞

n=0
bn· [z − P ]n

where B := BoC(~a) ∩ BoC(~b) is non-void. Suppose
there is a set Y ⊂ B st. F�Y = G�Y , and Y has a
cluster point, Q0, in B. Then ~a = ~b, so F = G. ♦

Remark. It does not suffice for Y to have a
cluster-point on the boundary ofB: Distinct functions
F(z) := sin( 1

z−7) and G := −F have Taylor series with
RoC = 7. Yet

F(yk) = 0 = G(yk) , for each posint k,

where yk := 7 + 1
2πk . �

Proof of (46). Subracting PSes gives us a PS

f(z) :=
∑∞

n=0
cn· [z − P ]n

so that f�Y ≡ 0, making

�� ��~c
?
== ~0 our goal.

For each q ∈ B := BoC(~c), let U(q) denote the
largest open ball (centered at q) which fits inside B. By
the New-center thm, the Taylor-series for f , centered
at q, converges to f on all of U(q).

Pick a Y -cluster-point Q0 ∈ B. By (45), f is iden-
tically zero on U(Q0).

On the line-segment running between Q0 and P ,
we can pick a (finite) list of points

Q0, Q1, . . . , QK−1, QK := P ,

such that each Qk ∈ U(Qk−1). Arguing inductively,
since f is identically zero on U(Qk−1), the the Taylor-
series at Qk has all-zero coeffs. This therefore holds
at P . So ~c = (((0, 0, 0, . . .))). �

47: Coro. Suppose F and G are analytic functions on
some connected open set V ⊂ C. If

{z ∈ V | F(z) = G(z)}

has a cluster point in V , then F = G. ♦
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§Index, with symbols at the beginning

f (n): nth derivative of f , 1
Bal(),CldBal(), Sph(), 2
PBal(),Ann(), 2
Itr(),Cl(), ∂(), {(): Operators, 2
C̊, Ĉ: Contour operators, 8
Ar, Lr,Dr,U: Contours, 13
Kr: Keyhole contour, 17
TK(z), RK(z): Taylor stuff, 11
u• ,u,

⊔
on sets, 20

Addition-is-continuous thm, 20
annulus, 2
Argand plane, 1

ball of convergence, 24
boundary, 2

Cauchy Inequality , 9
Cauchy Integral Formula, 8
Cauchy-Goursat thm, 8
Cauchy-Riemann eqns, 4
CIF, see Cauchy Integral Formula
circular reasoning, see tautology
cis(), cosine + i ·sine, 7
closed, closure, clopen, 2
compact set, 3
complement of a set, 2
Completing-the-square, 20
complex conjugate, 1, 6
Cone-boundedness Lemma, 10
Constancy thm, 5, 9
continuous, 3
cos–sin zeros Lemma, 7
CoV: Change-of-Variable, 1

discriminant, 13, 20
DUC, Derivative uniform conver-

gence thm, proved in Prof.K
Adv.-Calc notes, 25

eventually positive, 24
exponential

complex, 6

Fund. thm of Algebra , 4, 10

Gauss mean value thm, 9
GCIF, see Generalized CIF
Generalized CIF thm, 8

Harmonic Lemma, 5

indicator function, 20, 25
inner-radius, 2
interior-point, 2
ISTProve, i.e: It-Suffices-to-prove
ITOf, i.e: In-terms-of

Jordan Lemma, 16

keyhole contour, 17

Limit-closed Lemma, 3
limit-closed, 3
Liouville thm, 9
Local-constancy Lemma, 9, 10

Maclaurin Series, 24
Maximum-modulus principle, 10
McS, see Maclaurin Series
metric space, 1
Minimum-modulus principle, 10
Morera’s thm, 8
Mr. Rogers, see neighborhood
MS, MSes, see metric space
Multiplication-is-cts thm, 20

nbhd, see neighborhood
neighborhood, 2
Non-neg Lemma, 21

Open pullback Lemma, 3
open set, 2
Open-set Diff-path-conn. thm, 5
outer-radius, 2

Path-indep thm, 5, 8
path-independence property, 5
PIP, see path-indep. property
polynomial

discriminant, 20
splits, 10
Taylor, 11

power series, 12, 24
Proof

circular, see circular reasoning
overlapping-ball, 10

PS, see power series

radius of convergence, RoC, 24
residue, 12

Same-RoC Lemma, 25
SCC, 8
set-of-convergence, 24
sphere, 2
symmetric difference, 20

tail of a sequence, 1
tautology, see Proof, circular
Taylor polynomial, 11
Taylor-remainder corollary, 11
Taylor-series thm, 11
Theorems

Addition-is-continuous, 20
Cauchy Inequality, 9
Cauchy Integral, 8
Cauchy-Goursat, 8
Cone-boundedness, 10
Constancy, 5, 9
cos–sin zeros, 7
Fund. thm of Algebra, 4, 10
Gauss mean value, 9
Generalized CIF, 8
Harmonic, 5
Jordan, 16
Limit-closed, 3
Liouville, 9
Local-constancy, 9, 10
Maximum-modulus, 10
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Minimum-modulus, 10
Morera’s, 8
Multiplication-is-cts, 20
Non-neg, 21
Open pullback, 3
Open-set Diff-path-conn., 5
Path-indep, 5, 8
Same-RoC, 25
Taylor-remainder, 11
Taylor-series, 11
Unique fnc-limit, 3
Unique-limit, 2

Triangle-inequality, 1

Unique fnc-limit Lemma, 3
Unique-limit Lemma, 2

WLOG = Without-loss-of-generality,
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