Chromatic polynomial of a graph

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Page 1 of 7

Polynomial preliminaries. A polynomial such as \(f(x) = 8x^2 - 7x + 2 \) can be written as
\[8e_2 - 7e_1 + 2e_0, \]
where \(e_j(x) := x^j \). As a linear combination,
\[f = \sum_{j=0}^{2} \alpha_j e_j, \]
where \(\alpha := (\alpha_0, \alpha_1, \alpha_2) = (2, -7, 8) \). The product of \(f \)
with a degree-3 polynomial \(g = \sum_{k=0}^{3} \beta_k e_k \) is
\[f \cdot g = \sum_{n=0}^{5} \gamma_n e_n, \]
where, summing over natnum-pairs \((j,k)\), each
\[\gamma_n = \sum_{(j,k) \atop j+k=n} \alpha_j \beta_k. \]
This \(\gamma = (\gamma_0, \ldots, \gamma_5) \) is \(\alpha \odot \beta \), the convolution
of \(\alpha \) with \(\beta \). An alternative notation to (\(\dagger \)) is
\[f = \sum_{j=0}^{\infty} \alpha_j e_j, \]
where \(\alpha_j = 0 \) when \(j > 2 \). Such an \(\alpha = (\alpha_0, \alpha_1, \ldots) \)
is an eventually-zero sequence.

We'll also need the falling-factorial polynomials,
\[[x \downarrow N] := x \cdot [x-1] \cdot [x-2] \cdots [x-[N-1]] \]
(a product of \(N \) many terms), where \(N \in \mathbb{N} \). How to write
a poly such as \(F(x) := 2x^3 + x^2 - 3x + 3 \) in terms of
falling factorials? The coeff of \(x^3 \) is \(2 \), so we subtract,
\[F(x) - 2 \cdot [x \downarrow 3] = 5x^2 - 7x + 3. \]
From this we subtract \(5 \cdot [x \downarrow 2] \), producing
\[-2x + 3. \]
From this we subtract \(-2 \cdot [x \downarrow 1] \), yielding 3. From 3
we subtract \(3 \cdot [x \downarrow 0] \), ending with zero. Thus
\[F(x) = 3 \cdot [x \downarrow 0] - [x \downarrow 1] + 5 \cdot [x \downarrow 2] + 2 \cdot [x \downarrow 3]. \]
Letting \(t_n(x) := [x \downarrow n] \), we have equality
\[F = 3e_0 - 3e_1 + e_2 + 2e_3; \]
\[= 3t_0 - 2t_1 + 5t_2 + 2t_3. \]
We have done a change-of-basis computation, from
basis \((e_j)_{j=0}^{\infty} \) to the \((t_n)_{n=0}^{\infty} \) basis.

Chromatic form. Looking ahead, consider a monic intpoly \(P() \)
with \(R \subseteq \mathbb{N} \) many \{ not necessarily distinct \}
integer-roots \(Z_1, Z_2, \ldots, Z_R \). Writing \(P(x) \) in chromatic form
means writing
\[1c: \ P(x) = \prod_{j=1}^{R} [x - Z_j] \cdot f(x), \]
where \{ either "\(f(x) \) is absent or \} \(f \) is a monic intpoly
with no integral roots. Indeed, courtesy the Gauss Lemma for polynomials,
our \(f \) has no rational roots.

When \(P \) is a chromatic polynomial, its integer-root part
\(\prod_{j} [x - Z_j] \) should be written in form
\[*: \ x^{e_0} \cdot [x - 1]^{e_1} \cdot [x - 2]^{e_2} \cdots [x - [K-1]]^{e_K-1}, \]
often mixed with falling-factorials, e.g
\[**: \ ([x \downarrow 2]^3 \cdot [x \downarrow 4] \cdot [x - 1]^7. \]
See (4d), the Chromatic-polynomial Corollary.

Graph terminology. Use \(K_n \) for the complete graph
on \(n \) vertices, and \(K_{j,k} \) for the complete \((j,k)\)-bipartite graph. Use \(C_n \)
for the cyclic graph with \(n \) vertices and \(n \) edges \(|C_n| \) has a single self-edge; \(C_2 \) has 2
edges between 2 vertices; for \(n \geq 3 \), our \(C_n \) is a simple graph.
Use \(\text{Emp}_n \) for the \(n \)-vertex graph with no edges; an "Empty graph".

Coloring. Consider \(G = (V, E) \), a finite graph,
[loops, multiple-edges ok] with \(N := |V| \), and \(L := |E| \). Use \(c(G) \)
for the \# of connected components of \(G \).

For \(k \in \mathbb{N} \), a "\(k \)-coloring of \(G \)" means to assign a "color",
an element of \([1 \ldots k] \), to each vertex, so that no two neighbors
[the end-vertices of an edge] have the same color. A \(k \)-coloring is full
if it uses all \(k \) colors. The chromatic number of \(G \), written \(\chi(G) \),
is the minimum number of colors needed. I.e, it is the
unique \(k \) so that there is a \(k \)-coloring of \(G \), and every \(k \)-coloring of \(G \) is full.

For \(k = 0, 1, 2, \ldots \), let \(P_G(k) \) be the number of \(k \)-colorings of \(G \). Note \(P_{\text{Emp}}(k) = 1 \) since the void graph
[no vertices] has exactly one \(k \)-coloring. Chromatic number \(\chi(G) \) is
the smallest natnum \(k \) for which \(P_G(k) \) is positive.\(^1\)

\(^1\)If \(G \) has a loop, then \(P_G() \equiv 0 \) and \(\chi(G) := \infty \).

If \(G \) has multiple edges between vertices \(u,v \), then replacing
them by a single edge will not change the chromatic poly/number. Without announcement we will do this;
effectively, we compute chromatic polys only of simple graphs.
Deletion-contraction. Consider an \(N\)-vertex \(G\) and edge \(\alpha \in \mathbb{E}\). Let \(G \setminus \{\alpha\}\) mean to delete edge \(\alpha\); no vertices are removed, so \(G \setminus \{\alpha\}\) still has \(N\) vertices. In contrast, use \(G/\alpha\) to mean the graph with \(N-1\) vertices, where we have contracted \(\alpha\), so that its two endpoints become a single vertex, and \(\alpha\) is gone. Delete loops if the contraction creates such. If contraction creates a multi-graph, it is a matter of taste whether to delete extra edges.

2: Deletion-contraction Thm. On \(N\)-vertex loopless multi-graph \(G = (V, \mathbb{E})\), function \(\mathcal{P}_G()\) is a degree-\(N\) monic polynomial. For each \(\alpha \in \mathbb{E}\),

\[
\mathcal{P}_G(x) = \mathcal{P}_{G \setminus \{\alpha\}}(x) - \mathcal{P}_{G/\alpha}(x),
\]
as polynomials. Also, \(\mathcal{P}_G(x)\) has no constant term, except when \(G\) is the void graph.

\(\square\)

Pf. The only \(N=0\) graph is void, and \(\mathcal{P}_{\text{Emp}_0}(x)\) is constant-1, which is monic and of degree zero. Fixing \(N \geq 1\), we induct on the number, \(L\), of edges. The \(L=0\) case is trivial, since \(\mathcal{P}_{\text{Emp}_N}(x) = x^N\).

As \(G \setminus \{\alpha\}\) has \(L-1\) edges, \(\text{poly} \mathcal{P}_{G \setminus \{\alpha\}}\) is monic of degree-\(N\). As \(G/\alpha\) has at-most \(L-1\) (we might have deleted a loop) and \(N-1\) vertices, our \(\mathcal{P}_{G/\alpha}\) is a degree-\([N-1]\) poly. Since their difference is a monic degree-\(N\) poly, ISTEstablish the (2a) recurrence. We will show that

\[
\mathcal{P}_G(k) + \mathcal{P}_{G/\alpha}(k) = \mathcal{P}_{G \setminus \{\alpha\}}(k),
\]
for each posint \(k\). This implies equalit as polynomials, since we will have equal outputs, for \(N+1\) many values of \(k\).

The endpoints of \(\alpha\), call them \(u\) and \(v\). Consider a coloring of \(G/\alpha\), but split apart the combined vertex back into separate vertices \(u\) and \(v\) [and don’t put in edge \(\alpha\)]. This is now a coloring of \(G \setminus \{\alpha\}\) that gives \(u\) and \(v\) the same color. In contrast, each coloring of \(G\) gives distinct colors to \(u\) and \(v\); so removing \(\alpha\) gives a coloring of \(G \setminus \{\alpha\}\) with \(u\) and \(v\) having different colors. Hence (2b).

\(\square\)

Properties of \(\mathcal{P}_G\). Initially, \(N \in \mathbb{N}\).

\[
\begin{align*}
\mathcal{P}_{\text{Emp}_N}(x) &= x^N. \\
\mathcal{P}_{\text{K}_N}(x) &= \left[x \downarrow 1\right].
\end{align*}
\]

Now, \(N \geq 1\). The \(N\)-vertex path graph, \(P_N\), is a special case of a tree. Below, \(T_N\) is an arbitrary tree on \(N\) vertices. Easily,

\[
\begin{align*}
\mathcal{P}_{P_N}(x) &= \mathcal{P}_{T_N}(x) = x \cdot [x-1]^{N-1}. \\
\end{align*}
\]

For \(N \geq 2\),

\[
\begin{align*}
\mathcal{P}_{C_N}(x) &= [x-1]^N + [-1]^N[x-1]. \\
\end{align*}
\]

In particular,

\[
\begin{align*}
\mathcal{P}_{C_4}(x) &= x \cdot [x-1]^3 \cdot [x^2 - 3x + 3] \\
&= x^4 - 4x^3 + 6x^2 - 3x.
\end{align*}
\]

Proof of (3c). Note \(C_2\) becomes the path \(P_2\), after collapsing the multi-edge, hence has chrom-poly \(x \cdot [x-1]\), which is what (3c) is equal to; the base case.

Applying (2a) to \(G := C_{N+1}\) and an edge \(\alpha\), gives \(G \setminus \{\alpha\} = P_{N+1}\) and \(G/\alpha = C_N\). So \(\mathcal{P}_G(x)\) equals

\[
[x \cdot [x-1]^N - \left([x-1]^N + [-1]^N[x-1]\right)].
\]

And this reduces to \([x-1]^{N+1} + [-1]^{N+1}[x-1].\)

From each vertex of \(C_N\), attach an edge to a common vertex, \(u_{N+1}\). This wheel graph \(W_{N+1}\), has \(N+1\) vertices and \(2N\) edges. For \(N \geq 2\), then,

\[
\mathcal{P}_{W_{N+1}}(x) = x \cdot \mathcal{P}_{C_N}(x-1)
\]

\[
\begin{align*}
\mathcal{P}_{W_{N+1}}(x) &= x \cdot \mathcal{P}_{C_N}(x-1) \\
&= x \cdot \mathcal{P}_{C_N}(x-1) \\
&= x \cdot [x-2]^N + [-1]^N[x-2].
\end{align*}
\]

(Fixing a posint \(x\), there are \(x\) choices to color vertex \(u_{N+1}\), hence \(x-1\) colors available for the embedded \(C_N\).) E.g., (???) gives \(\mathcal{P}_{C_3}(x-1) = [x-1] \cdot [x-2] \cdot [x^2 - 5x + 7]\). So

\[
\begin{align*}
\mathcal{P}_{W_5}(x) &= \left[x \downarrow 3\right] \cdot [x^2 - 5x + 7].
\end{align*}
\]

Trivial graphs. Note \(\mathcal{P}_{C_1} = x\) and \(\mathcal{P}_{C_0} = \mathcal{P}_{\text{Emp}_0} = 1\); neither produced by (3c). The wheel-recurrence \(\mathcal{P}_{W_N}(x) = x \cdot \mathcal{P}_{C_{N-1}}(x-1)\) holds \(\forall N \geq 1\).

Exer E1: Suppose \(\mathcal{P}_G(x) = x \cdot [x-1]^{N-1}\). Prove that \(G\) is a tree.

\(\square\)

Footnote: If \(u, v\) have multiple edges, then contracting a \(u \rightarrow v\) edge creates a loop, hence a graph with \(P() \equiv 0\). This is ok, but inefficient; typically, first collapse each multi-edge to a single edge.
Cone over a graph. Write this: Wheel graph \(W_{N+1} \) is the cone over \(C_N \). Double cone. And \(K \)-vertex cone gives clumsy formula involving bell numbers.

Alternatively, the \(K \)-vertex cone over \(G \) is the full-product of \(G \) with \(\text{Emp}_K \).

Defn. An alternating polynomial \(h(x) \) has form
\[
B_Nx^N - B_{N-1}x^{N-1} + B_{N-2}x^{N-2} - B_{N-3}x^{N-3} + \ldots + (-1)^{N-K}B_K x^K,
\]
where \(N \geq K \) are natnums, and each \(B_i \geq 0 \). Call index \(K \) the low-degree of \(h \), written \(\text{LD}(h) \). Here is an easy exercise. For \(f \) and \(g \) alternating-pols:

4a: \[\text{Product } f \cdot g \text{ is alternating, and } \text{LD}(f \cdot g) = \text{LD}(f) + \text{LD}(g). \]

4b: \[\text{If } \text{Deg}(f) = 1 + \text{Deg}(g), \text{ then } f - g \text{ is alternating, with } \text{LD}(f - g) = \text{Min}(\text{LD}(f), \text{LD}(g)). \]

4c: Chromatic polynomial Theorem. For a non-void simple graph \(G = (\mathcal{V}, \mathcal{E}) \), write its chromatic polynomial \(\mathcal{P}_G(x) \) in form (4). Then
\[\mathcal{P}_G \text{ is a monic alternating intpoly, with } N = |\mathcal{V}|, B_{N-1} = |\mathcal{E}| \text{ and } K = c(G). \]

[This \(c(G) \) is the number of connected-components.]

Proof. [We have “monic” and “\(N = |\mathcal{V}| \) from (2).] First suppose \(G \) decomposes into (non-void) disjoint subgraphs \(H_1 \sqcup H_2 \). Let \(N_j := |\mathcal{V}_{H_j}|, L_j := |\mathcal{E}_{H_j}|, K_j := c(H_j) \) and \(f_j := \mathcal{P}_{H_j} \). So \(f_j \) has form
\[
f_j(x) = x^{N_j} - L_jx^{N_j-1} + \ldots + C_jx^{K_j}
\]
with \(C_j \neq 0 \). Easily, \(\mathcal{P}_G = f_1 \cdot f_2 \), hence is alternating, by (4a), with low-degree \(K_1 + K_2 \equiv c(G) \). The penultimate coeff of \(f_1 \cdot f_2 = -[L_1 + L_2] \), which indeed is the number of \(G \)-edges. So WLOG, \(G \) is connected.

When \(G \) is connected. [Recall \(N \geq 1 \) since \(G \) is non-void.] Pick a \(G \)-edge, \(\alpha \), whose removal does not disconnect \(G \); if there is none such, then \(G \) is a tree [possibly the edgeless tree], where (*) evidently holds.

Hence both \(G \setminus \{\alpha\} \) and \(G/\alpha \) are connected, Thus \(f := \mathcal{P}_{G \setminus \{\alpha\}} \) and \(g := \mathcal{P}_{G/\alpha} \), each satisfy (*). So \(f - g \) is alternating, by (4b), and \(\text{LD}(f - g) = \text{Min}(1,1) = 1 \), which is indeed the number of connected-comps of \(G \).

Counting edges. Let \(L := |\mathcal{E}| \). Our \(G \setminus \{\alpha\} \) has \(L - 1 \) edges, thus \(f(x) = x^N - [L-1]x^{N-1} + \ldots \). And \(g \) is monic, \(g(x) = x^{N-1} - \ldots \). The difference thus has form \(\mathcal{P}_G(x) = x^N - Lx^{N-1} + \ldots \), as desired. \(\diamondsuit \)

4d: Chromatic-polynomial Corollary. Polynomial \(\mathcal{P}_G \) has no negative roots. Setting \(K := c(G) \), we can therefore write \(\mathcal{P}_G(x) = x^{c_0} \cdot [x - 1]^{c_1} \cdot [x - 2]^{c_2} \cdots [x - (K-1)]^{c_{K-1}} \cdot f(x) \), with each \(c_j \in \mathbb{Z}_{>0} \). Moreover, \(f \) is either absent, or a monic intpoly, with no negative real\(^3\) roots, and no rational roots. \(\diamondsuit \)

Proof. An alternating-poly evaluated at a negative real, yields a sum of posreals, hence is positive. Finally, since \(f \) is primitive (the GCD of its coeffs is 1) each rational root must be integral, by the Gauss Lemma for polynomials.

Exer E3.1415: “The composition of two chromatic-pols is always a chromatic-poly.” Prove, or CEX.

Gluing

The next result uses
\[
\ldots \text{two graphs } H_j, \text{ for } j = 1, 2, \text{ with } N_j \text{ many vertices and } L_j \text{ many edges. Let } h_j := \mathcal{P}_{H_j}.
\]

5a: Gluing lemma. When \(G \) is built from non-void simple graphs \(H_1 \) and \(H_2 \) by…

0: disjoint union, then \(\mathcal{P}_G(x) = h_1(x) \cdot h_2(x). \)

1: picking a vertex \(u_j \) in \(H_j \) and identifying the two vertices, then \(\mathcal{P}_G(x) = h_1(x) \cdot h_2(x)/x \). This \(G \) has \(N_1 + N_2 - 1 \) many vertices and \(L_1 + L_2 + 1 \) many edges. Call this \(G \) a point-gluing of \(H_1 \) and \(H_2 \).

2: picking an edge \(\alpha_j \) in \(H_j \) and identifying the two edges (choose an orientation), then
\[
\mathcal{P}_G(x) = h_1(x) \cdot h_2(x)/x[x-1].
\]

This \(G \) has \(N_1 + N_2 - 2 \) vertices and \(L_1 + L_2 - 1 \) edges. Call this \(G \) an edge-gluing of \(H_1 \) with \(H_2 \).

\(^3\)However, \(f \) can have complex roots with negative real-part.
3: picking a vertex u_j in H_j and putting in a (new) edge between them, then

$$\mathcal{P}_G(x) = h_1(x) \cdot h_2(x) \cdot \frac{x^{-1}}{x}.$$

This G has $N_1 + N_2$ many vertices and $L_1 + L_2 + 1$ many edges. This G is a new-edge-attaching of H_1 and H_2.

Proof. Exercise.

5b: Gluing on a subgraph. Graph $M = (\mathcal{V}, \mathcal{E})$ is a **subgraph** of $H = (\mathcal{V}', \mathcal{E}')$ if there exist injections $\Phi: \mathcal{V} \leftarrow \mathcal{V}'$ and $\Psi: \mathcal{E} \to \mathcal{E}'$ so that:

For each $\alpha \in \mathcal{E}$ with endpoints $u, v \in \mathcal{V}$, necessarily, the endpoints of $\Psi(\alpha)$ are $\Phi(u)$ and $\Phi(v)$.

Henceforth, for both injections we’ll use a common symbol (usually Φ) and write $(\Phi: M \leftarrow H)$.

Consider graphs H_j as in (5), as well as a graph M. Suppose $\Phi_1: M \to H_1$ and $\Phi_2: M \to H_2$. Define the **gluing** of H_1 with H_2, over (Φ_1, Φ_2) as the graph G which is the “union” of H_1 and H_2, where for each vertex u and edge α of M:

5c: Vertex $\Phi_1(u)$ is identified with $\Phi_2(u)$ and edge $\Phi_1(\alpha)$ is identified with $\Phi_2(\alpha)$.

So G has $N_1 + N_2 - |\text{Vertices}(M)|$ many vertices, and $L_1 + L_2 - |\text{Edges}(M)|$ many edges. When we don’t need the details of the gluing, we will refer to G as a gluing of H_1 with H_2, over M.

Notation: I use symbol \sqcup for “**disjoint union**”, so let’s use $H_1 \sqcup H_2$ for gluing over the void graph. More generally, use

5d: $H_1 \sqcup_M H_2$ or $H_1 \sqcup_{\Phi_1} H_2$ for gluing over M; the latter, if the details are needed.

Say that M is **gluing-good** if, for all graphs H_1, H_2 having M as a subgraph, necessarily

5e: $\mathcal{P}_G(x) = \mathcal{P}_{H_1}(x) \cdot \mathcal{P}_{H_2}(x)/\mathcal{P}_M(x)$,

whenever G is a gluing of H_1 with H_2 over M.

Bipartite graphs. For natural numbers B and G, the complete bipartite graph $K_{B,G}$ has all edges between $B := [1..B]$ and $G := [1..G]$, the “Boys” and “Girls”, and no other edges.

For natural numbers B and ℓ, the **Stirling number of the second kind**, $\mathcal{S}(B, \ell)$, is the number of partitions of $[1..B]$ into ℓ many non-empty atoms. (I.e., $\mathcal{S}(B, \ell)$ is the number of equivalence relations on $[1..B]$ that have ℓ many [non-void] equivalence classes.)

6: Sara’s Lemma. Let $f_{B,G}$ abbreviate $\mathcal{P}_{K_{B,G}}$. Then

6a: $f_{B,G}(x) = \sum_{\ell=0}^{B} \mathcal{S}(B, \ell) \cdot [x \downarrow \ell] \cdot [x - \ell]^G$.

Computing. At $B = 0$, the RhS is $1 \cdot [x - 0]^G$ which is x^G, which is correct.

Once $B \geq 1$ we can start the sum at $\ell = 1$, since there are no partitions of the empty set into positively many atoms.

Case: $B = 1$. The RhS is $1 \cdot [x \downarrow 1] \cdot [x - 1]^G$, i.e, $x \cdot [x - 1]^G$, which is what (3b) says, as $K_{1,G}$ is a tree.

Case: $B = 2$. At $B = 2$, our RhS(6a) is

$$\mathcal{S}(2, 1) \cdot [x \downarrow 1] \cdot [x - 1]^G + 1 \cdot x \cdot [x - 1]^G$$

$$\mathcal{S}(2, 2) \cdot [x \downarrow 2] \cdot [x - 2]^G + 1 \cdot x \cdot [x - 1] \cdot [x - 2]^G.$$

So $f_{2,G}(x)$ equals $x \cdot [x - 1]^G + [x - 1] \cdot [x - 2]^G$.

Once $G \geq 1$, we have that

6b: $f_{2,G}(x) = x \cdot [x - 1] \cdot [x - 1]^{G-1} + [x - 2]^G$.

Plugging in $G=2$ yields RhS(??‘), which is reassuring seeing as $K_{2,2}$ equals C_4.

Case: $B = 3$. RhS(6a) is a sum of three terms:

Case: $B = 3$. RhS(6a) is a sum of three terms:

$$\mathcal{S}(3, 1) \cdot [x \downarrow 1] \cdot [x - 1]^G = 1 \cdot x \cdot [x - 1]^G;$$

$$\mathcal{S}(3, 2) \cdot [x \downarrow 2] \cdot [x - 2]^G = 3 \cdot x \cdot [x - 1] \cdot [x - 2]^G;$$

$$\mathcal{S}(3, 3) \cdot [x \downarrow 3] \cdot [x - 3]^G = 1 \cdot x \cdot [x - 1] \cdot [x - 2] \cdot [x - 3]^G.$$

As soon as $G \geq 1$, ratio $f_{3,G}(x)/x[x - 1]$ equals

Using colors orange&blue there are 2 colorings of $K_{3,G}$ [since G>0], so (6c) at $x=2$ better equal 1. Does it?
When \(G = 1 \), the \(K_{3,1} \) is a 4-vertex tree, so \((6c)\) with \(G=1 \) better durn well be \([x-1]^2\). Is it?

FWIW, \((6c)_{G=2} \) is \([x^3 - 5x^2 + 10x - 7] \); irre.

Evaluating, \((6c)_{G=3} \) gives

\[
6d: \quad \frac{f_{3,3}(x)}{x \cdot [x-1]} = x^4 - 8x^3 + 28x^2 - 47x + 31.
\]

This last is irreducible over the rationals. \(\square\)

Graph-Stirling numbers

For a generalization of “bipartite graph”, consider two graphs \(H_j = (V_j, E_j) \) with \(N_j \) vertices and \(L_j \) edges.

The **full product** \(G := H_1 \odot H_2 \) is their disjoint union, augmented by an edge from each \(H_1 \)-vertex, to each \(H_2 \)-vertex. Thus

\[
7a: \quad H_1 \odot H_2 \text{ has } N_1 + N_2 \text{ many vertices, and } L_1 + L_2 + [N_1 N_2] \text{ many edges.}
\]

We’ll get a formula for its chrom-poly, in terms of the following type of polynomial product.

Given two polynomials \(f \) and \(g \), we define their **falling product** \(h := f \downarrow g \), as following.

1. Write each w.r.t the falling-factorial basis, i.e

\[
f = \sum_{j=0}^{J} \alpha_j t_j \quad \text{and} \quad g = \sum_{k=0}^{K} \beta_k t_k,
\]

as shown in \((1b)\).

2. Compute \(\vec{\gamma} := \vec{\alpha} \circ \vec{\beta} = (\gamma_0, \gamma_1, \ldots, \gamma_{J+K}) \), the convolution.

3. Define \(h := \sum_{n=0}^{J+K} \gamma_n t_n \).

Defn. A **Stirling partition** of graph \(G = (\mathbb{V}, E) \), is a partition of \(\mathbb{V} \) into non-empty subsets (called the **atoms** of the ptn) so that no two adjacent vertices are in the same atom. [I.e, each atom is an “independent set”.]

For natnum \(\ell \), define the **graph-Stirling number**

\[
7b: \quad \mathcal{S}(G, \ell)
\]

to be the number of \(\ell \)-atom Stirling partitions of \(\mathbb{V} \).

\textbf{7c: Graph-Stirling Thm.} For an \(N \)-vertex\(^\text{74}\) graph \(G \),

\[
\mathcal{P}_G(x) = \sum_{\ell=0}^{N} \mathcal{S}(G, \ell) \cdot [x \downarrow \ell].
\]

Proof. Exercise.

\(\diamond\)

\textbf{7d: Full-product Thm.} Consider a graph \(G := H_1 \odot H_2 \).

Then

\[
\mathcal{P}_G = \mathcal{P}_{H_1} \downarrow \mathcal{P}_{H_2}.
\]

Proof idea. Fix \(\ell \). The \(\ell \)-atom Stirling partitions of \(G \) are in 1-to-1 correspondence with: Pick natnums with \(j_1 + j_2 = \ell \), then take a \(j_1 \)-atom Stirling ptn of \(H_1 \), and a \(j_2 \)-atom Stirling ptn of \(H_2 \).

\(\diamond\)

\textbf{7e: Example.} Let \(H \) be \(P_2 \cup P_1 \). So \(\mathcal{S}(H, 1) = 0 \), \(\mathcal{S}(H, 2) = 2 \) and \(\mathcal{S}(H, 3) = 1 \). Our \((7c)\) asserts that \(\mathcal{P}_H = \sum_{j=0}^{3} \alpha_j t_j \), where \(\vec{\alpha} = (0, 0, 2, 1) \). I.e,

\[
\mathcal{P}_H(x) = 2[x \downarrow 2] + [x \downarrow 3] = [x \downarrow 2][2 + [x - 2]] \underset{\text{note}}{=} x^2 \cdot [x - 1].
\]

This agrees with \((3b)\) and with \((5a.0)\).

Let’s compute \(G := H \odot K \), where \(K := K_1 \). Our \(G \) is a \(K_3 \) with a new edge attached to a vertex. So \((5a.3)\) says \(\mathcal{P}_G(x) = [x \downarrow 3] \cdot [x - 1] \). What does \((7d)\) say?

Our \(K \) has chr-poly \(x = [x \downarrow 1] \). We set \(\vec{\beta} := (0, 1) \), then compute convolution \(\vec{\gamma} := \vec{\alpha} \circ \vec{\beta} = (0, 0, 0, 2, 1) \).

Thm \((7d)\) asserts that

\[
\mathcal{P}_G(x) = 2[x \downarrow 3] + [x \downarrow 4] = [x \downarrow 3][2 + [x - 3]] \underset{\text{note}}{=} [x \downarrow 3][x - 1].
\]

This agrees with our derivation via \((5a.3)\). \(\square\)

\textbf{7f: Bipartite ex.} Graph \(H := \text{Emp}_3 \) has \(\mathcal{S}(H, 1) = 1 \), \(\mathcal{S}(H, 2) = 3 \), \(\mathcal{S}(H, 3) = 1 \), and so \(\vec{\alpha} = (0, 1, 3, 1) \).

Thus

\[
\mathcal{P}_H(x) = x \cdot [1 + [x - 1][3 + [x - 2]]] = x \cdot [1 + [x^2 - 1]] = x^3.
\]

\(^{74}\)We can start the sum at \(\ell=1 \) except when \(G \) is the void graph. After all, when \(N \) is positive then \(\mathcal{S}(G, 0) \) is zero.
This indeed agrees with (3a).

Since $K_{3,3}$ is the full-product of H with H, we compute $\gamma := \vec{\alpha} \oplus \vec{\alpha} = (0, 0, 1, 6, 11, 6, 1)$. Polynomial

$$[x \downarrow 2] + 6[x \downarrow 3] + 11[x \downarrow 4] + 6[x \downarrow 5] + [x \downarrow 6]$$

simplifies (thanks, Maple) to

$$x \cdot [x-1] \cdot [x^4 - 8x^3 + 28x^2 - 47x + 31].$$

Happily, this agrees with (6d). □

Spanning subgraphs

Fix a $G = (V, E)$ with N vertices and L edges. Each subset $S \subset E$ can be interpreted as (V, S), a spanning subgraph of G. [Thus G has 2^L many spanning subgraphs.]

Let $c(S)$ denote the number of connected components of S.

8: CPSS Thm (Chromatic-Poly Spanning Subgraph).

The chromatic polynomial of G satisfies

$$p_G(x) = \sum_{S : S \subset \mathcal{P}} (-1)^{|S|} \cdot x^{c(S)}.$$

Exer E4: Prove this. Think Inclusion-Exclusion. [Hint: See the pamphlet on our Teaching Page.]

Comparison. We can paraphrase Theorems (8) and (7c) as saying: Spanning subgraphs express p_G w.r.t the standard basis $(e_j)_{j=0}^{n}$ [see (1b)], whereas Graph-Stirling numbers write p_G w.r.t the falling-factorial basis $(t_n)_{n=0}^{\infty}$.

9a: Orientations.

An orientation of $G = (V, E)$ is putting a direction on each edge, creating a digraph; so G has $2^{|E|}$ many orientations. An orientation of G is acyclic if it has no directed-cycles. Use $A(G)$ for the number of acyclic orientations of G.

An orientation of K_N is called an N-tournament; there are 2^N of them. E.g., K_4 has $2^6 = 64$ orientations. Exer E5: Prove that $A(K_N)$ equals $|N!|$. □

9b: Acyclic-count Thm (Richard Stanley).

On N-vertex G,

$$A(G) = [-1]^N \cdot P_G(-1).$$

Sketch. The idea is to establish an analog of (2a),

$$A(G) = A(G \setminus \{\alpha\}) + A(G / \alpha),$$

for each edge α of G, as follows. Let $M := G \setminus \{\alpha\}$.

- Each acyclic-orient of M extends to at least one acyclic-orient of G.
- The number of acyclic-orient of M which give rise to two acyclic-orientations of G, is $A(G / \alpha)$.

10: Generalizing full-product.

Let G be the set of all graphs. Consider a graph $S = (V, E)$ and a fnc $F : V \rightarrow G$; we’ll often write $F(u)$ as F_u. Use $N_u | L_u$ for the number of vertices/edges of F_u.

The “full product of F over S”

$$G := \bigodot_S(F)$$

is S, but where each S-vertex u has been replaced by a copy of graph F_u. Moreover, for each S-edge $v \rightarrow w$:

Each F_v-vertex v' and each F_w-vertex w', are the endpoints of a G-edge.

Thus $\bigodot_S(F)$ has $\sum_{u \in V} N_u$ many vertices. It has

$$\bigoplus_{u \in V} L_u + \sum_{v \neq w} [N_v \cdot N_w]$$

many edges, where the second sum is over all S-edges $v \rightarrow w$. In the case that S is a single edge, p_2, we recover the full-product as defined above (7a).
Full-product from (7a) is associative, so expressions such as $H_1 \odot H_2 \odot \ldots \odot H_5$ make sense. If we define $\mathcal{F}(j) := H_j$, then

10b: $H_1 \odot H_2 \odot \ldots \odot H_5 = \odot_{K_5}(\mathcal{F})$,

regarding $[1..5]$ as the vertex-set of K_5. \square

Exer: Is there a formula for the chromatic number/polynomial of $\odot_S(\mathcal{F})$, in terms of corresponding information about S and function \mathcal{F}? What about special cases, e.g. $S = P_3$? Or $S = C_{\text{Even}}$?