Binomial Coefficients

Jonathan L.F. King University of Florida, Gainesville FL 32611-2082, USA squash@ufl.edu Webpage http://www.math.ufl.edu/~squash/ 27 May, 2014 (at 10:29)

Entrance. (Use 'ineq.' for "inequality" and 'coeff' for "coefficient". Use \asymp for "asymptotic to"; $f(n) \asymp g(n)$ means that $\frac{f(n)}{g(n)} \to 1$ as $n \nearrow \infty$.)

Stirling's formula says that $n! \simeq \sqrt{2\pi n} \cdot [n/e]^n$. This implies that the central binomal coeff $\binom{2n}{n}$ is asymptotic to $4^n \cdot \frac{\text{Const}}{\sqrt{n}}$, where

Const =
$$1/\sqrt{\pi} \approx 0.564$$
.

Overview. Fix a posint K for the rest of this note. Induction on $n \in [K .. \infty)$ will give

$$\alpha_n$$
: $\binom{2n}{n} \geqslant 4^n \cdot \frac{\mathbf{A}}{\sqrt{n}}$
 β_n : $\binom{2n}{n} \leqslant 4^n \cdot \frac{\mathbf{B}}{\sqrt{T+n}}$,

for all $n \in [K..\infty)$, once non-negative constants $\mathbf{B}, \mathbf{A}, T$ are chosen according to the following lemma. Necessarily, constants \mathbf{B} and \mathbf{A} will have to satisfy $\mathbf{B} \geqslant \frac{1}{\sqrt{\pi}} \geqslant \mathbf{A}$.

1.1: Central-coefficient lemma. Define A_K st. LhS (α_K) equals RhS (α_K) , i.e, let

1.2:
$$\mathbf{A} := A_K := \frac{\binom{2K}{K}}{\binom{4K}{K}} \cdot \sqrt{K}$$
.

For each $n \in [K..\infty)$, then, inequality (α_n) holds. Fix a real $T \geqslant \frac{K}{4K-1}$, then take **B** so as to give equality in (β_K) . I.e, define

1.3:
$$\mathbf{B} := B_K := \frac{\binom{2K}{K}}{4^K} \cdot \sqrt{T+K}$$
.

Then inequality (β_n) holds for each $n \in [K .. \infty)$. Lastly,

$$\gamma$$
: $\binom{2n}{n} \geqslant \frac{1}{2n} \cdot 4^n,$

for each $n \in \mathbb{Z}_+$.

Preliminaries. Let \hat{n} denote some unknown *positive* function of n, and let $n = 1/\hat{n}$. Each of the three

bounds above is OTForm $\hat{n} \cdot 4^n$. Thus each inequality has the form

$$\dagger(n): \qquad {2n \choose n} \ \gtrless \ 4^n \cdot \widehat{n} \,,$$

where relation \geq is either " \geq " or " \leq ".

Assume that we have verified (\dagger) for some base-case value of n. The induction step is $\dagger(n-1) \implies \dagger(n)$. Here is the algebra:

$$\begin{pmatrix} 2n \\ n \end{pmatrix} = \begin{pmatrix} 2n-2 \\ n-1 \end{pmatrix} \cdot \frac{[2n-1] \cdot 2n}{n \cdot n} = 4 \cdot \begin{pmatrix} 2n-2 \\ n-1 \end{pmatrix} \cdot \frac{[2n-1]}{2n}$$

$$(by \ induction) \ \gtrless \ 4 \cdot \left[4^{n-1} \cdot \widehat{n-1}\right] \cdot \frac{[2n-1]}{2n}$$

$$= 4^n \cdot \widehat{n-1} \cdot \frac{[2n-1]}{2n} .$$

We want the RhS to $\geq 4^n \cdot \hat{n}$, in order to continue the induction. So we wish to establish

$$\widehat{n-1} \cdot \frac{2n-1}{2n} \stackrel{?}{\gtrless} \widehat{n}$$
.

Replace each \hat{n} by 1/(n). This rewrites our goal as

$$\ddagger: \qquad \frac{2n-1}{2n} \stackrel{?}{\gtrless} \frac{(n-1)}{[n]}. \qquad \Box$$

Proof of (γ) . Here, n := 2n, so the desired inequality (\ddagger) is

$$\frac{2n-1}{2n} \stackrel{?}{\geqslant} \frac{2[n-1]}{2n}$$

which is immediate. Finally, (γ) holds at n=1.

Proof of (α). Let $n := \sqrt{n}$; the multiplicative constant **A** is irrelevant for (\ddagger), the induction step. We wish to show that $\frac{2n-1}{2n} \geqslant \frac{\sqrt{n-1}}{\sqrt{n}}$. Squaring each side gives this equivalent ineq.

$$\left[1 - \frac{1/2}{n}\right]^2 \quad \stackrel{?}{\geqslant} \quad 1 - \frac{1}{n}.$$

But LhS² equals RhS + $\left[\frac{1/2}{n}\right]^2$, so the inequality holds.

Page 2 of 2

Proof of (β) . Set $n := \sqrt{T+n}$.

Inequality (‡) becomes $\frac{2n-1}{2n} \leqslant \frac{\sqrt{T+n-1}}{\sqrt{T+n}}$. This is equivalent (since $n \geqslant 1$, so $T+n-1 \geqslant 0$) to its square,

$$\left[1 - \frac{1}{2n}\right]^2 \leqslant 1 - \frac{1}{T+n}.$$

Squaring-out the LhS leads to $\frac{1}{4n^2} - \frac{1}{n} \leqslant -\frac{1}{T+n}$. So $\frac{4n-1}{4n^2} \geqslant \frac{1}{T+n}$, i.e $T+n \geqslant \frac{4n^2}{4n-1}$. Thus $T \geqslant \frac{1}{4} \cdot \frac{4n}{4n-1}$. And since the RhS of this is decreasing, each

1.4:
$$T \geqslant \frac{K}{4K-1}$$

suffices for the induction to hold.

Filename: Problems/NumberTheory/binomial-coeffs.latex As of: Wednesday 11Oct2006. Typeset: 27May2014 at 10:29.