NT-Cryptography	Prof. JLF King
MAT4930 7554 Class-B	2Sep2015

Please *fill-in* every *blank* on this sheet.

B4: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a The Huffman code with letter-probabilities $\mathcal{M}: \frac{5}{54} \qquad \mathcal{O}: \frac{7}{54} \qquad \mathcal{R}: \frac{3}{54} \qquad \mathcal{S}: \frac{21}{54}$ $T:\frac{6}{54}$ $I:\frac{12}{54}$ codes these to bitstrings: $I: \qquad \mathcal{M}:$ $O: \qquad \mathcal{R}: \qquad \mathcal{S}: \qquad \mathcal{T}:$ Bitstring 010010111001101 decodes to , answering: "What do you do to a castle?" b Consider the three congruences C1: $z \equiv_{15} 11$, C2: $z \equiv_{21} 5$, and C3: $z \equiv_{70} 61$. Let z_j be the smallest *natnum* [or DNE] satisfying (C1) $\stackrel{\text{All}}{\dots}$ (Cj). Then $z_2 =$ $; z_3 =$ Let $f(x) := x^2 - 9x + 14$, and $N := 475 \xrightarrow{\text{note}} \mathbf{p} \cdot 25$, where $p \coloneqq 19$ is prime. The *number* of solns $x \in [0..N]$ to $f(x) \equiv_N 0$ is K = A number $Z \in [0..N)$ such that $f(Z) \neq 0$ yet $f(Z) \equiv_N 0$ is

 $\left[\textit{Hint:} \text{ Find solns mod-} p \text{ and mod-} 25, \text{ then use CRT.}\right]$

OYOP: In grammatical English Sentences, write your essays on every third line (usually), so that I can easily write between the lines. Do <u>not</u> restate the question.

B5: Carefully state the Chinese Remainder Thm, CRT, being precise with the hypotheses, and the conclusions. If you use a term such as "reduced-product" then carefully define it. Say what properties G_1 , the first "magic number", has to have, and a give formula for G_1 .

Lii Define the Euler-phi fnc, φ . *Precisely* state what it means for $\varphi()$ to be a *multiplicative-function*.

B6: Part of the Kraft-McMillan Inequality Thm (K-M Thm) concerns a (binary) prefix-code with lengths $\ell_1, \ell_2, \ldots, \ell_N$. It states that

$$\left[\sum_{j=1}^{N} 1/2^{\ell_j}\right] \leqslant 1.$$

If this is *equality*, then the code is said to be *complete*.

Consider a prefix-code \mathcal{T} with lengths s_1, s_2, \ldots, s_N . Prove that there exists a prefix-code, \mathcal{C} , with lengths ℓ_1, \ldots, ℓ_N that satisfy

*:
$$\forall j \in [1 .. N]: \quad \ell_j \leqslant s_j.$$

Moreover, C is <u>complete</u>.

End	End of Class-B	
B4:	60pts	
B5:	50pts	
B6:	40pts	
Total:	150pts	
Please PRINT your name ar	nd ordinal. Ta:	

Ord:

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: