				Ora:
Calc 2 MAC2312	Class-B	Prof. JLF King Touch: 18Mar2017	B-Home:	295pts 160pts
		DNE in a blank if the dedicated operation cannot be		
The techical	$egin{array}{ll} ext{term for (the surface of)} \ ext{\bf Annulus} & ext{\bf Cum} \end{array}$	a doughnut is a/an Circle:	Total:	455pts
Frabjous Go Sagittarius	ozinta Hoopoid Tardis Torus	Ring Spurious Wuss Zaurus	HONOR CODE: "I have neither on this exam other than from my Name/Signature/Ord	*
tank round side	reight-density $S :: lb$ a down, see blackboard te the tank from its	/ft ³ fills a hemispherical H of radius U :: ft. The stop is	L	Orc
		$\cdot \mathrm{d}z$.		
And $W = $		$= \operatorname{Poly}(U, S).$		
	he time-derivative o	1		
ITOf (t),(d),(m):	$\operatorname{Units}\left(\begin{matrix}\operatorname{Hooke's}\\\operatorname{Const.}\end{matrix}\right) = \underbrace{{c}}}$			
		$\int_{4}^{4} \frac{1}{t+5} \mathrm{d}t = $		
$\frac{A}{x-4} + \frac{B}{x+3}$	$+\frac{C}{x+1} = \frac{2x^2 - 7x + \frac{1}{x+1}}{[x-4][x+3][x+1]}$	$\overset{2}{(+1)} \text{ with } C = \underset{\square}{(-1)} \in \mathbb{Q}$		
$\int \cos(t) \left[\mathbf{s} \right]$	$ \sin(t)]^5 dt = $. [Subst.]		

End of Class-B

 $\int_{2}^{3} \log(t) dt = \log(R) + K, \text{ where } R =$

is a rationial number and $K = \underbrace{\mathbb{Z}. \ [\mathit{Hint:} \ \mathit{IBParts}]}$

That h() is a **rational function** means that

 $\int \frac{z}{1+z^2} \, \mathrm{d}z =$. Thus [IBP]