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Semigroups. For us, a semigroup is a triple

(S,e,€e), where e is an associative binary operation

on set S, and e € S is a two-sided identity elt.”"
Axiomatically:

G1: Binop e is assoctative, i.e Va,8,7 € S, necessar-
ily [aefley = ae[3eq]

G2: Elt e is a two-sided identity element, i.e
Vo€ S: acee=«a and eea = a.

Moreover, we call S a group if t.fol also holds.

G3: Each elt admits a two-sided inverse element:
Va, 36 such that ce S =€ and fea =-e.

When the binop is ‘4’, then we write the inverse
of o as ~a and call it “negative .

If we refer to the binop as ‘multiplication’ then write
the inverse of @ as o' and call it “the reciprocal of
«”. Also, we usually omit the binop-symbol and write
af for a-S.

For an abstract binop ‘e’, we usually write o' for
the inverse of a, and we call it “a inverse”. If e is

commutative |Va,B3, necessarily a e 3= eal then we
call S a commutative (semi)group.

Rings/Fields. A ring is a five-tuple (', +,0,,1)
with these axioms.

R1: Elements 0 and 1 are distinct; 0 # 1.

R2: Triple (F, +, O) is a commutative group.

R3: Triple (I‘, o, 1) is semigroup.

R4: Mult. distributes-over addition from the left,
alz +y] = [ax] + [ay], and from the right,
[ + yla = [xa] + [yal; this, for all a,z,y € T.

“1What I'm calling a semigroup is usually called a monoid.
The std defn of semigroup does not require an identity-elt.

Webpage http://people.clas.ufl.edu/squash/

Fix a € T'. Elt 8 € T'is a““(two-sided) annihilator
of @” if af = 0 = fa. An « is a (two-sided) zero-
divisor if it admits a non-zero annihilator. So 0 is a
ZD, since 0-1 =0=1-0, and 1 # 0. We write the set

of '—zero-divisors as

ZDr or ZD(T).

An o € Tis a [~unit if 36 #0 st. af =1 = fa.

Use Unitsy  or Units(I)
for the units group. In the special case when I is
Zpn, I will write &5 or ®(V) for its units group, to
emphasize the relation with the Euler-phi fnc, since

@(N) = [Dn].

Integral domains, Fields. A commutative ring
[commRing| is a ring in which the multiplication is
commutative. A commRing with no (non-zero) zero-
divisors [i.e ZDr = {0}] is called an integral domain,
[intDomain| or sometimes just a domain.

An intDomain F' in which every non-zero element
is a unit, Units(F) = F~{0}, is a field. l.e, F is a

commRing such that triple (F ~ {0}, -, 1) is a group.

Ezamples. Every ring has the “trivial zero-divisor” —
zero itself. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Z19 comprise
{£2,£3,+4, 6}.

In Z the units are +1. But in Zi9, the ring of in-
tegers mod-12, the set of units, ®(12), is {£1, £5}.
In the ring QQ of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {£1,+4}. [Aside: Units(G) is cyclic,
generated by 2. And Units(Z12) is not cyclic. For which N is
®(N) cyclic?] O
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Irreducibles, Primes. Consider a commutative
ring (T, +,0,-,1). An elt a € T is a zero-divisor
(abbrev ZD) if there exists a non-zero 8 € I' st. a8 = 0.
In contrast, an element u € I' is a unit if Jw € I st.
uw = 1. (This w is the “multiplicative inverse” of wu, is
unique, and is often written 1[1.) Exer1: In an arbitrary
ring T, the set ZD(T") is disjoint from Units(T").
An element « is:

12 I'-2rreducible if o is a non-unit, non-ZD, such
that for each I'-factorization o = z-y, either = or
y is a T-unit. [Restating, using the definition below:

Either z=~1,y~a, or w%a,yzl.]

1i: I-prime if « is a non-unit, non-ZD, such that
for each pair ¢,d € I": If o o [c-d] then either
adcor add.

Associates. In a commutative ring, elts o and [
are associates, written v ~ 3, if o & 5 and o o
[i.e, « € BT and B € oI'|. They are strong associates,
written a =~ 3, if there exists a unit u st. § = ua.

Ex 2: Prove Strong-Assoc = Assoc.

Ex3:If o ~ 8 and « ¢ ZD, then «, 8 are strong associates.

Ex4:In Zio, zero-divisors 2,4 are associates. Are they
strong associates?

Ex5: With d ¢ «, prove: If « is a non-ZD, then d is a non-7ZD.

And: If « is a unit, then d is a unit.

1: Lemma. In a commRing I', each prime « is irre-
ducible. O
Proof. Consider factorization o = xy. Since « ¢ zy,
WLOG « ¢ z, i.e 3¢ with ac = z. Hence

*3 a = ry=aQcy.

By defn, a ¢ ZD. We may thus cancel in (x), yielding
1 =cy. So y is a unit. ¢

There are rings”? with irreducible elements p which
are nonetheless not prime. However. ..

“2Consider the ring, T', of polys with coefficients in Zis.
There, 2 — 1 factors as [z — 5][z + 5] and as [z — 1][z + 1]
Thus none of the four linear terms is prime. Yet each is I'-
irreducible. (Why?) This ring I" has zero-divisors (yuck!),
but there are natural subrings of C where Irred#-Prime.

Back to Semigroups
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2: Lemma. Suppose commRing I' satifies the Bézout
condition, that each GCD is a linear-combination.
Then each irreducible « is prime. O

Proof. Suppose a ¢ xy and WLOG «  z. Let

g == GCD(a, z). Were g = «, then o ¢ g ¢ z, a con-

tradiction. Thus, since « is irreducible, our g ~ 1.
Bézout produces S, T € I" with

1 = Sa+Tx.
*: y = Say+Txy = Sya+Txy.

Hence

By hyp, a ¢ xy, hence « divides RhS(x). So o o y. 4

Example where ~#=. Here a modification of an
example due to Kaplansky.
Let Q be the ring of real-valued cts fncs on [-2,2].

Define €D € Q2 by: Fort > 0:

o= = fi1 11Eba,

and @(t) = —'D(*t).

[So € is an Even fnc; D is odD.] Note € = fD and D = f€,

where
1 iftell, 2

ft) =t iftel[1,1]
-1 ift e [-2,-1]

Hence € ~ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [-2,2] \ {0}. Cty of g then forces g = 0.

Could there be a unit u € Q with 4D = £7 Well

and u(72) = ) o -1.

u(2) _ % note 1’ =

~—

Cty of u() forces u to be zero somewhere on (-2,2),
hence u is not a unit. O

Back to Semigroups

Consider a not-nec-commutative semigroup (S, e, e)
and an z € S. Anelt A € S is a “left inverse of z”
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if A\ex = e. Of course, then x is a right inverse
of A\. Use LInv/RInv for “left /right inverse”.

We will often suppress the binop-symbol and
write zy for = e y.

3: Prop'n. In a semigroup (S, e,€):

12 For each x € S: If © has at least one LInv and
one RInv, then x has a unique LInv and RlInv,
and they are equal.

11: Suppose every elt of S has a right-inverse. Then

S is a group. O

Proof of (1). Suppose A is a LInv of z, and p a Rlnv.
Then
A = Azp] = [Az]p = p.

And if two Llnvs, then A\; = p = o. ¢

Proof of (ii). Given z € S, pick a RInv r and a RInv
to 7, call it y. Now

r=zelryl = [zrley = y.
Hence r is both a left and right inverse to x. Etc. 4

In the next lemma, we neither assume existence of
left-identity /left-inverses, nor do we assume unique-
ness of right-identity /right-inverses.

4: Lemma. Suppose X is an associative binop on S,
and e € S is a righthand-identity elt. Suppose that
each y € S has a righthand inverse, 3y'. Then:

da: If yxy=y, then y=-e.

Moreover:

Each v is also a left inverse to y, and e is
4b: . .

also a lefthand-identity.
Thus (S, x,€) is a group, O
Pf(4a). Notey=yxe=yx [yxy]=[yxy] xy.
By hypothesis y x y = y, so the above asserts that
y=yxy e o

Cyclic groups
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Pf of (4b). First let’s show that every Rlnv, ¢/, of v,
isalso a LInv of y.  Let b:= [y x y]. Courtesy (4a),
it is enough to show that b x b =b. And

bxb = [y x [yxy]] xy, by assoc.,
= [y x €] Xy

note
= ».

=y xy

We can now show that e is also a lefthand identity.
After all, exy=[yxy|xy=yx [y xy|=yxe,
since ¢/ is a LHInverse. l.e, e x y = y. ¢

Henceforth, groups”? are the subject.

Cyclic groups

I use Cycy for the order-N cyclic group. By de-
fault, it is written multiplicatively, but I may write
(Cycy, ) or (Cycy,+) to indicate specifically. The
infinite group Cyc,, is iso to (Z, +).

For y € G we use Periodsg(y) for the set of in-
tegers k with y* = e. A subgroup H C G de-
termines a similar set. Let Pgp(y) = Prc(y) be
{keZ | y* € H}. So Periods(y) is simply Pg(y),
when H is the trivial subgp {e}.

5: Periods Lemma. Fix G, H,y as above, and let Py
mean Py (y). If Py is not just {0}, then Pgy = NZ,
where N is the least positive element of Py.

For G-subgroups H O K, then,

H-Ordg(y) o K-Ordg(y) o Ordg(y). O

“3Here is my generic footnote: Typical group notation:
(G, -,e) or (I, -,&) or (G, -,1) or (G,+,0). The symbol
for the neutral [i.e, identity] element may change, according to
whether the group name is a Greek letter, or whether the group
is written multiplicatively or additively. A vectorspace might be
written as (V, +,0). A group of functions, under composition,
might be written (G, o, Id).

We’ll use 1 (a blackboard bold ‘1°) for the trivial group, but in
specific cases may write {e} or {0}.

Use Cycy, Sy, Dy for the N cyclic, symmetric and dihe-
dral groups. So |Cycy|=N and |[Sy|=N! and |Dy|=2N. The
alternating group An has |A1| = 1; otherwise, |An| is N!/2.
Use Z(Q) for the center of G. The automorphisms of G form a
group (Aut(G),o,Id).

Each = € G yields an inner automorphism of G defined
by Jz(g) == xgx™". The set {J,}zec is written Inn(G); it is a
normal subgp of Aut(G). The map J: G—Aut(G) by J(z) = Ja,
is a group homorphism.
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Proof. Suppose N := Min(Zy N Pp) is finite. Fixing
a k € Py, we will show that k je N.

Set D := GCD(N, k). LBolt (well, Bézout's lemma)
produces integers such that D = NS + kT. Hence
D € Py, since y” equals [yN]% - [y*]T = % - e”. Thus
N =D o L. ¢

6: Defn. Use H-Ord(y) or H-Ordg(y) for the above N;
else, if Py is just {0} then H-Ord(y) := co. Call this
the “H-order of y”. The order of y, written Ord(y)
or Ordg(y), is simply H-Ordg(y) when H = {e}. [

Suppose H <1 G. Now [yH|* = y*H, so [yH]*=H
IFF y € H. In terms of the quotient group,

5t Vy € G: Ordg g (yH) = H-Ordg(y) o Ordg(y) -

Dihedral groups

The Klein-4 group is isomorphic to Cycy X Cycs.
Often called the Vierergruppe, it has presentation

each pair commutes, and the prod-

Each of {a,b,c} is an involution,>
uct of each two equals the third.

7V o= <a,b,c

Using fewer generators, but less symmetric, is this
presentation:
7 V = (abla’=e=b% asSh).
For each posint N, the N** dihedral group is
g Dy = (r,f|f’=e, frir=e, ' =e);
" De = (r,f | £2 = e, frfr =e), for N = co.

Now for some straightforward facts.
9: Fact. For all N € [1..00] and integers j:
r/f =f-r7.

Lastly, Ord(Dy) = 2N, and Ord(Dy) = No. O

10: Lemma.  Groups D1=Cyc, and Dy=CycyxCycy
(the Vierergruppe), so each has full center and trivial
Inn()-group.

For each N € [3..00]:

Both Z(Dw) and Z(Dpy oqq) are trivial. Conse-
quently Inn(Dy) = Do and Inn(Dy o4q) = Dy .

When N = 2K is even: The center Z(Dox) =

{e,r®}. Consequently Di = Inn(Dyx) via the map
rj —> c]rk' aHd fI'] — Jfrk: ,  Improve this!

where k == [j mod K]. O

Normality

Prof. JLF King

Proof. The commutator [r/, f] equals

erist = g2 = ¥,

Thus v/ < £ IFF 25 e N. So the only possible nt-
element in the center is r, where N = 2K < oo.
And r commutes with each fr’. ¢

Normality

Consider two gps H C (. Say that “H is normal
in G, written H <1 G, if [Vz € G: xHx™' = H]. This
is equivalent (see (19), below) to [Vo € G: xHx™ C H].
However, an individual element x could give proper
inclusion, as the following two examples show.

Proper inclusion, x Hz ™! G H, forces that |H| = oo
and Ord(z) = oo and that G is not abelian.

11: E.g. Let G := Sgz. Let H C G comprise those
permutations h:ZO st. [Vn < 0: h(n) = n]; i.e, hly
is the identity-fnc.

Define z € G by x(n) := n—5. For n negative,

T h x!
e n — n—-5 — n—-5H — n,

for an arbitrary h € H. Consequently, tHxz ™' C H.
Note that (f) holds for all n<5. So no elt n € H
which mowves something in [0..5), e.g, n(2) = 3, can
possibly be in zHz™'. We have thus zHx™" ;Cé H,
proper inclusion. O

12: E.g. Kevin Keating tells me that the following is
a standard example.

In G := GL(Q), the shear S:=[} 1] generates
H = (S),, which is a copy of (Z,+). Conjugating

G
by X := [2 §] produces (XSX™! = §?]. Consequently,
xaxt = {[§ %] |nez}.

This is a proper subset of H. O

13: Defn. For subsets N,I' C G, let NI' mean the set
of products za, over all x € N and a € I'. Even when
N and I' are subgroups, the product NI' need not be
a subgroup.

Le, let r,f be the rotation and flip in G := Ds.
Subgroups N = {e,f} and I' := {e,fr} make NI'
equal {e, f,fr,r}. This is not a group, since it does
not own r2. ]
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14: Lemma. If at least one of the subgroups N,I"' C G
is normal in G, then I'N = NI', and this product is
itself a G-subgroup. O

Proof. (Use letters z,y € N and o, 8 € F.) WLOG N « G.
Thus 2’ := BzB! is an N-element. Hence Sz € TN
equals 2/3. Consequently, 'N C NI'. By symmetry,
then, I'N = NT.

Why is NI' sealed under multiplication? Well,
yB - za equals yr’Ba € NI'. Finally, the inverse
rxa=alzl e ’N =NTI. ¢
Defn.  Two subgroups N,I' C G are transverse,
written N L T', if NN T = {e}. Always, the map
15: [:NXI'=NI', by (z,w) — 2w,
is onto. It is injective IFF N and I' are transverse.

The following result characterises direct product. [

16: Direct-product Lemma. Suppose N, I" C G groups,
with N <G, and N L T'. Let

G = (N,I); == NI,

Recalling the bijection. f:NxI'— G from (15), the
following are equivalent:

i: N ST, inside G.

1: f is a homomorphism, hence isomorphism.
ii: ' G. O
Pf (i)=-(ii). Does f respect multiplication? Checking,

def

f(z,0)) - f((y,8)) = za-yB = xyap,
since N S T'. And this equals f((zy, a3)). ¢

Pf (ii)=-(iii). Always {e}xI' < NxI". Now apply f.

Pf (iii) = (i). With x € N and a € T, we need to

show that (zaz o = o)

Note that az'a™ € N, since N < G. Hence

z-artal € NN c N.

And zaxz™ €T, sinceI' < G. So zax™! - o™t € T.
Thus [z,a] e NN T, so [z,a] =e. ¢
Defn. Let SurEnd(G) denote the semigroup of sur-

jective endomorphisms of G. Evidently

Normality
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17: Inn(G) C Aut(G) C SurEnd(G) C End(G).

Any of these inclusions can be strict, depending on
the group.

Here are various strengthenings of the notion “H is
a normal subgroup of G”. They are defined by how
many homomorphisms ¢:GO send H into itself.

Suppose that | (H) C H | for every ...

‘WHicH Homs? THEN WRITTEN AS

... ¥ € Inn(G) H<G

18: ... ¢ € Aut(G) HaG
... 1 € SurEnd(G) HYG

... % € End(G) HaG

19: Note. 1Inthe H <G and H 4 G cases, we may
conclude that each (inner-)automorphism « in fact

gives equality |«(H) = H|. This, because inclusion

H) C H must hold for both ¢ == « and ¢ := a1
Y(H) (0

In the examples below, H, K C (G, -, e) are groups.
Abbrev the normalizer N := N(H) := Ng(H) and
centralizer € := C(H) := C;(H) of subgp H. O

20: E.g. Fach z € G engenders a conjugation map
J2:GO by
To(g) = xga.

Easily Jy, o J; = Jy,. Conjugations are called inner
automorphisms of G; the group of conjugations is
written Inn(G). This map

21: J:G—Inn(G) : x — J,

is a surjective gp-homomorphism. Its kernel is the

center Z(G). So Z(G) < G and
22: Inn(G) = %

A slight generalization, taking a subgp H, is to map

21": Ju : Ne(H)—»Aw(H) : v — Jg |y .
Its kernel is the centralizer Cq(H). So % is group-

isomorphic to the subgroup

A = Range(Jy) C Aut(H). O
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23: Lemma. Suppose |G H|=2. Then H <1 G.

Pf. Pick b € G ~. H. Since the index is 2,
pHIUH = G = [Hb|UH.

Thus the left and right coset-partitions are equal. So
H < G. ¢

Remark.Index |G- H| = 2 need not imply the stronger

H 4 G. In the Vierergruppe, (7'), the (a),, subgroup
has index 2 in V. Yet the automorphism that ex-
hanges a and b moves (a).

Also, |G H| = 3is not sufficient to imply normality.
In D3, the non-normal subgp (£) has index 3. O

24: Lem. Consider groups H C G C F. Then
25: [HaGaF] — H4F.
26: [HaG<F] = H<F.

And [H QG QF)=H<F. Proof. Use (19). 0

Ques. Does [H 3G 3 F] imply H SF? A
CEX necessarily has G infinite, since there would be
a 1 € SurEnd(F') which maps G properly inside G.[]

27: Normal Grabbag.

1: For two subgps H, K of G, let <?1 be the strongest
?
normality so that both H,K <G. Then the com-
?
mutator-subgp [H, K] < G.

itz The center Z(G) < G, but not necessarily <.

iz Inn(G) < Aut(G), but not necessarily Q. O

Pf of (i). Take an-endomorphism = +— Z of the appro-
priate type. Fix h € H and k € K. By hypothesis,
h € H and k € K. Thus

note Ty 77

[h, k] . ¢

[H,K] > [h,K]

Normality

Prof. JLF King

Pf of (ii). Take an onto-endomorphism x — Z and a
point z € Z(G). To show z € Z(G), we fixa g € G
and show that gZg™' = e. Since the endo is surjective,
there exists an v € G such that 4 = g.

Now z &+, so e = yzy™'. Thus

—_—
1

e =721 =727

=g-2-g". ¢

Pf of (ii) bis. We produce an endomorphism, of a group
G = QxD, which carries its center Z(G) outside of
itself. ~ Here, 2 = {w, e} is an order-2 group gener-
ated by w. And D := D3 is a dihedral group; use e
for its neutral elt. So the center of G is
Z(G) = Z(Q) xZ(D) = Qx{e}.

Let £ be a flip in D3; it generates an order-2 subgp
{f,e} =0 F C D. The Klein-4 group QxF has an
“exchange the generators” automorphism, A, with

A((w,€e)) = (e,f) and
A((e,£)) = (w,€).

defined by exhanging the generators of subgps (2
and F. Finally, consider the endomorphism &:G—G
which collapses the D side:

Foralla € Qand x € D: &((a,2)) = (a,€).

Finally, the composition € > A is a G-endo which
carries x{e} to {e} xF. ¢

Pf of (iil). [Keating emailed me this. This in fact may have
been my original example.] Note that D4 has exactly two
subgroups isomorphic to the Vierergruppe,

V = (£ f) = {e,r’ £, fr’} and
V' = (£ fr) = {e,r’ fr,fr’}.

And a(V) = V', where a € Aut(Dy) is the automor-
phism which sends r — r and f +— fr.

Now for the example. Let G := Dy. Check that
A = Aut(Dy) = Dy. Its subgp S := Inn(Dy) = Dy is
isomorphic to a Vierergruppe. One can interpret the
above « as in Aut(A), and as carrying S to the other
copy of the Vierergruppe. ¢
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Examples of normal subgps. On ®-dim’al Eu-
clidean space R®, let Guans be the group of trans-
lations. Then Gryans 18 normal inside the gp of all
isometries. Indeed, GTyans is normal in the gp of in-
vertible affine maps R®0.

Proof. On V := R?®, each vector k € V yields a
translation T,:VO by Tk(v) := v+ k. Evidently a
linear L:V:.O has commutation

LoTe = Tyeol.

Consequently, a general (we want “invertible”) affine map
can be written A := L o T, for some linear L and trans-
lation T;

So to show Gryans normal in the affines, it is enough
to conjugate by an invertible linear map, L. Our goal
is to show that Lo T,, o L™ is some translation. But

LTel™ = LL' Ty = Tiw) - ¢

28: Observation. There exist groups G with
Inn(G) = G, yet with center Z(G) non-trivial. O

Proof. Let G be
]D)QXD4XD8XD16X....

By (10)...
Unfinished: as of 30ct2018 ¢

Examples of homomorphisms. For posints K,L
and cyclic gps (Zk,+) and (Zp,+), what is the set
H = HOH](ZK — ZL)?

Let D := GCD(K, L) and write

K=D-A and L=D-B, where Al B.

A homomorphism f € H is determined by where it
sends 1; f(y) =y - f(1). This f is well-defined as long
as it sends 0 and K to the same place. So we need
that

0 =, f(K) 2L DA.f(1).

L.e, DA- f(1) @ DB. Hence we need A- f(1) o B.
Since A L B, this latter is equiv to f(1) }e B. Writing
f(1) =3B, we get D many homomorphisms

Hom(Zyx — Z1) = {fM‘ M = jB, where }’

j€[0..D)
defined by far(y) == [M - y] mod L-

Ways to count in groups
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When L = K. Let E be the set of endomor-
phisms of (Zg,+). So (E,o) is a semigroup; in-
deed, a commutative semigp. It is semigp-isomorphic

to (Zk,-). Its automorphism subgp is, of course, gp-
isomorphic with (®(K),-).

Ways to count in groups

For a (possibly infinite) group G and posint D, define
Sp,c = {z€G|Ord(z) =D} .
On Sp,g define this relation: z ~p y IFF () o=(y) -

29: Phi Lemma. With Sp.¢ and ~p from above:
x ~p y IFF z= € (y). In particular, each equiv-
alence class has precisely ¢(D) many elements. So
[go(D) divides ysD,GU.

Moreover, the ratio |Sp |/ ¢ (D) equals the num-
ber of cyclic order-D subgroups of G. O

Proof. By hypothesis, (x) C (y). But these sets have
the same, finite, cardinality. So they are equal.

An elt z € G generates an order-D cyclic subgp
IFF 2 € Sp . So the order-D cyclic subgroups are
in 1-to-1 correspondence with the above equivalence
classes. ¢

Divisibility ideas. All these come from splitting G
into equal-sized subsets.

30: Lemma. Suppose ¢¥:G—Q is a surjective group-
homomorphism. Then Ord(Q) ¢ Ord(G). Indeed,
|Q| - |K| = |G|, where K = Ker(1)). O

Proof.The 1-inverse-image of each ¢ € @ is a left-coset
of K in G. (Using right-cosets also works, since K < G.) ¢

31: Lagrange's Theorem. Given groups H C G, then,
Ord(H) ¢ Ord(G). O

Proof. The left-cosets of H form a partition of G. ¢

Ques. Q1. Suppose N := Ord(G) is finite, and posint
D ¢ N. Must G have a cyclic subgp of order D? How
about just a (non-cyclic) subgp? O
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No. The N* dihedral group Dy is generated by a
flip £ and an order-N rotation r.

Although Ord(D;5) = 30 and 6 ¢ 30, nonetheless
D15 has no elt of order 6: Its 15 “flip elts”, fr!, each
have order 2. And inside the order-15 rotation-subgp
there are certainly no order-6 elts, courtesy Monsieur
Lagrange.

BTWay, the divisors k of 15 are 15,5,3,1.
number of elts in (r) of each of these orders is

The

kEl15]5(3]1
And 8+4+2+1=15"

ok) || 84|21

Although D15 has no element of order-6, it does
have a subgroup of order 6. The subgp (£, r5> is iso-
morphic to Ds. ¢

32: Really really No.  Although Ord(A4) = 12 and
6 o 12, nonetheless A4 has no subgroup of order 6:

Proof. The cycle-structures for even permutations on
four tokens are

[1,1,1,1] [2,2] [3,1]

Order 1 2 3

Cyc-struct

How many 1

And 1+3+8=12= |Ay|.

Let H be the alleged order-6 subgp of G. Neces-
sarily there is a § € H with cyc-struct [3,1]. If H
owned a [2,2] a, then o := BaB ™" would have to be
a different [2,2] (they couldn’t commute). But then H
includes the Klein-4 group («,a’). Yet 4 6.

The upshot is that no elt of H~{e} is [2,2], so each
is a [3,1]. And there are 5 of them. Courtesy (29),
then, 5 o ©(3). But 5} 2. ¢

33: Cauchy's Thm for finite abelian groups.  Suppose
N = |G| < oo where G is an abelian group, written
multiplicatively. If prime p o N, then there exists
y € G with Ord(y) = p. O

“4Indeed, this yields a proof that Zd.‘N ©(d) equals N.

Ways to count in groups

Prof. JLF King

Proof. [From the web.] Enumerate G as g1, g2,...,9n
and let K1,..., Ky be their orders. ISTProve that
~ N
P .( K = j=1 KJ )

since then, WLOG, p o Ks; so goK2/Pl has order p.
Now G :=Zg, X ... x Zk, has order K. The map

is onto, since f((1,0,...,0)) = g1, etc.. And f
is a group-homomorphism since G is abelian. Thus
Ord(G) o Ord(G). Hence p o Ord(G) o K. ¢

A more standard proof uses induction on quotient
groups.

Pfof (33). WELOG p := 5. We may assume that

If Q is a finite abelian group with Ord(Q) le 5,

34 then () owns an element of order 5.

holds for each group @ with |Q| < |G].

It suffices to produce a y € G with Ordg(y) e 5.

Since |G| > 1 we can pick a nt-element h € G;
WLOG K := Ord(h) } 5. Thus 5 divides £, which is
the order of @ = %, where H = (h); note H < G
since G is abelian. Finally, h # e so |Q| < |G]|.

Thus (34) applies to produce an element y € G with
Ordg(yH) = 5. And by (5,5'), the Periods Lemma,

Ordg(y) @ Ordg(yH). ¢

Group actions. The symbol GOS2 means that gp G
acts on set €); there is a gp-hom . For
g € G and w € (2, write the gp-action as 14(w) or
g(w) or just gw. Define the orbit and stabilizer of a
point w, and the fixed-pt set of a group-element g:

Oy(w) = {gw|g G} C Q;
Staby(w) = {g€ G| gw = w} C G,
Fixy(g) = {w € Q| gw =w} C Q.

This Stab(w) is a subgp, but is rarely normal in G:

35 Vfegd: f-Stab(w) - f = Stab(fw).

36: Orbit-Stabilizer Lemma. For each w € §:

*: Ord(Staby(w)) - [Oy(w)| = Ord(G). O
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Proof. Let H := Stab(w). Say two elements g, f € G
are “equivalent”, g ~ f, if gw = fw. Evidently, the
equiv-class of ¢ is simply the left coset gH. These
equivalence-classes partition G; hence (x). ¢

37: Burnside's Lemma.

B Z|Stab(w){ . {(g,w)‘gw:w} £ Z|Fix(g)
9eG

wen

Counting cardinalities,

Counting the number of G-orbits, then,

Z |F1X

geG
. {# of points fixed by an av—} 0O
" |erage element of G ’

I #Orbits =

Proof. The number of G-orbits equals

rb-Sta * 1
el o S [Stab(w)].

wEQ ’ | weN

Now apply (37t) to earn (37%). ¢

Application: Coloring a cube’s faces. Color
the six faces of a cube red, white and blue. How
many distinct colorings are there, up to orientation-
preserving rotation? ~ We will use Burnside's Lemma.
The group, G, of orientation-preserving rotations of
the cube has 6-4 = 24 elts, and is group-isomor-
phic to S4. In the 2°d column, below, remark that
1+6+3+8+6=24=|G|

What isom- How many |#Fix(g)|| F := #[Face-orbits
etry g7 such g7 — 3F. under (g)].
Id 1 3 || 1141414141
FaceRot 90° $.2=6 3% || 14441

FaceRot 180° $.1=3 3* || 1+242+1
VertexRot 120°| §-2=38 3% || 3+3

EdgeRot 180° 2.1=6 3% || 2+2+2

The sum 55 - [1-3°+6-3%+3-31+8.32+6- 3%
equals 57. Usmg K many colors, the number of K-
colorings is o7 - [K® + 3K* + 12K3 +8K?), i.e, is

38: K2 [K*+3K* + 12K + 8] /24, (Faces)

Class equation

Page 9 of 14

Coloring a cube’s vertices. K-color the eight
vertices of a cube. How many rotationally-distinct
colorings are there?

What isom- #{such g iFiX‘Eg N ve="* [Vertex-orbits
etry g? =K" under (g)].

b/ 1 K8 || T18]

FaceRot 90° 6 K? || [47]

FaceRot 180° 3 K* || 124

VertexRot 120° 8 K* || [1?,3%]

EdgeRot 180° 6 K* || 24

The coeff of K* is 3+ 8+ 6 = 17. So the number of
vertex K-colorings is o; - [K® + 17TK* + 6K?] i.e, is

39: K?. [KG +17K? + 6}/24. (Vertices)

Class equation

Consider a finite group acting on a finite set, G O €,
and let S be its set of orbits. The trivial assertion
UQ] = 0es ]OU leads to a useful formula, when we
consider G acting on itself via conjugation. Firstly,
the Orbit-Stabilizer thm restates the circled as

G|
2 |Stab(w)]’

w€eAllOReps

Q] =

where “AllOReps”’ stands for “all orbit representa-

this is one token w per G-orbit. Now let

Fix(G) = ﬂgEG

This is the set of w in 1-point orbits, i.e, O(w) = {w}.
Let’s pull out these trivial orbits and define

tives”,

Fix(g) .

OReps := AllOReps \ Fix(G);

this has one representative in each non-trivial orbit.
We have a primordial class equation,

N+ >

weOReps

I (S

40: Q =
0= 1 Staba@)]

|Fix(G

Specializing to conjugation. We now let Q = G,
and have G act on ) by conjugation. So we have
a homomorphism J:G—=Sq by g — J,, where Jy(w)
equals gwg™
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Acting by conjugation, the stabilizer Stabg(w) is
the centralizer Cg(w). The orbit of w is called its
conjugacy class, written

©(w) = {gwg "' |g€G}.

A conjugacy class is “non-trivial” if it has more than
one point. So (C(h) is trivial IFF C(h) = G IFF
h € Z(G), where Z(GQ) = Npeq C(h) is the center
of G. Below, let “h € PECC” mean to take one
representative h “Per Each Conjugacy Class”. Let
PCC mean “Per non-trivial Conjugacy Class”.

41: Class-Equation Thm. For a finite group G,

Gl

41,: |G’ = W .

2]+ >

hePCC

Each summand |G|/|C(h)| is in [2..|G]], and is a
proper divisor of |G|. The Y -sum is empty, hence
zero, IFF G is abelian. O

Remark. A less useful form of the class-eqn does not separate
out the size-1 conjugacy classes. It says

_ G|
Gl = > ey 0

hePECC

Proof.  Everything has been shown, except for the
observation that when the action is conjugation, then
Fix(G) is the center Z(G). ¢

We get a nice corollary when G is a “p-group”.

42: Center-pop Thm (P.403). Suppose |G| = p%, where
p is prime and L € Z,. Then Z(G) is non-trivial. (So
|Z(G)| = p for some K € [1..L].) O

Proof. The centralizer of each h € PCC(G) is a proper
subgroup, so p divides |G|/|C(h)|. Hence p divides the
sum on RhS(41"). So p divides |Z(G)|. ¢

43: Cauchy's Thm for finite groups (P.406).  Suppose
N = |G| < co. If prime p o N, then there exists
y € G with Ord(y) = p. O

Class equation

Prof. JLF King

Proof. This holds when G = 1, so we may assume

(pr ¢ Ord(Q) then @ has an order-p element. j

holds for each group @ with |Q| < |G|. So WLOG
we may assume that each centralizer C(h), for h in
PCC(G), has order not a multiple of p. Thus p divides
the RhS(41) sum. So p ¢ Ord(Z(QG)).

We may now apply (33), Cauchy's thm for abelian
groups, to Z(G), to get a order-p element. ¢

Remark. We get a nice progression of proofs. Note
that (34) uses induction on quotient groups, but does
not use the Class-Eqn, whereas Center-pop Thm (42)
uses the class equation but no induction. The above
Cauchy's thm (43), used quotient-induction to put the
class equation in play.

An jazzed-up (43) argument will give Sylow’s first
theorem. O

Defn. Fix a prime p. For each natnum k and finite
group (), define this proposition.

If p* o Ord(Q) then Q has a subgroup
of order p*.

P(k,Q):

We now show that this holds universally. O

44: Sylow's First Thm. For each prime p, for each nat-
ural number k and finite group G, proposition P(k, G)
holds. O

Pf. Always P(0, ) holds, so fixing a K>1 and finite
group G, we show that P(K, G). We may assume that
Ord(G) o p¥ and

P(K—1,%) holds. Also P(K,Q) obtains,

45 o each group @ with |Q| < |G].

So WLOG p” $€g(h), for each h in PCC(G). Thus
p divides the Y -sum in (41’). So p ¢ Ord(Z(G)).

Cauchy’s thm for abelian groups now gives us a sub-
group H C Z(G) of order-p. Every subgp of the cen-
ter is G-normal, so we have a quotient group Q = %,
and p&~! divides its order. By (45), this @ has a
subgroup @’ of order pX—1.

Lastly, H' = Uveg U is a subgroup; it is a union of

H-cosets U. And |H'| = |H|-|Q'| = p-pX~1 =pK.¢
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Misc. counting results. We first state a theorem
just for pedagogical purposes.

46: Lemma. We have a subgroup H C Z(G). Sup-
pose that each two left H-cosets, Hi and Hs, have
representatives y; € H; such that y1ys. Then G is
abelian. O

Proof. Pick two arbitrary z; € G. By hyp., there are
y; € Hx; which commute. Write z; as h;y;. So x1ao
equals

yrhily2ha] = y1y2hohi, since hy € Z(G),

= yoyrhoh1,  since y2 Sy,
= yghgylhl, since ho € Z(G)
And this equals xox1. ¢

An immediate corollary is this “G mod Z” lemma.

47: G/Z Lemma. We have a subgroup H C Z(G); nec-
essarily H < G. If G/H is cyclic, then G is abelian.{

Remark. In the lemma, any of G, H or G/H may be infinite.

Hypothesis “G/H is cyclic” cannot be weakened to “G/H
is abelian”. For example, the 8 elt dihedral group G = Dy is
non-abelian. It has presentation

G = <r,f|f2:e, frfr =e, r4:e>.

Its center is H := {e,r?} and the quotient group G/ H is isomor-
phic to D2, which is abelian (= Z2xZ2). What goes wrong with
the proof, below? Well, the two H-cosets {r,r®} and {f,fr?}
have no representatives which commute. (|

Proof. Pick an elt z € G so that coset zH generates
the cyclic group @ = G/H. Each element of ) has
form [zH]|". Since H is G-normal, [zH]" = 2"H. So

we let 2" be our representative of coset [zH|". ¢
48: Lemma. In group G, suppose commuting ele-

ments a, ¢ have different prime orders p and q. Then

Ord(ac) = p-q. O

Normalizer mod Centralizer
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Proof. Let y := ac. Were y = e then p = Ord(a) =
Ord(c!) = Ord(e) = q; 2¢. So Ord(y) # 1.

Since a 5 ¢,

Ord(y) § LCM(p, q) 222 p-q.

Were Ord(y) ¢ p, then e = [ac]P = cP, so p |e Ord(c).
L.e p ®» g. Contradiction.

So Ord(y) &p. Ditto Ord(y) &¢q. But Ord(y) ¢ pg.
Thus Ord(y) = pgq, ¢

49: Prop'n. Suppose K,L C G are groups. Then

f: KL| = |K|-|L|/|K N L]

gives the cardinality of the product-set KL, which
may or may not be a group. %

Proof. Let N = |K N L|. Certainly the map
e KxL—KL: (k,0)— kt

is onto. We show that an elt kA € KL has precisely
N many preimages under (1). Each ¢ € K N L yields
ke € K and ¢'\ € L, with ke - ¢'\ equaling k.
Conversely, a product k¢ = k\ yields a common ele-
ment
Kk = M1 = ¢ in KN L.

And ke = k and ¢ '\ = £. So each c gives a preim-
age. ¢

Normalizer mod Centralizer

Call a posint N is grouply unique if the cyclic group
is the only group of order N. We get a sufficient
condition for a product p - g to be grouply-unique.
Here is a routine generalization of an elegant proof
from Gallian.

50: Theorem. Suppose p < q are prime numbers st.

i p—13g—1 and pdg—1.

Then the only group G of order p - q is cyclic. O
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Setup. FTSOC we’ll assume that G is not cyclic. Our
goal is to exhibit commuting elts h, k € G of orders p
and g, resp.. Necessarily, the product hk will have
order pg. To produce this miracle, we’ll show that

G has a unique order-q subgp; call it K.

ol: Moreover, its centralizer Cq(K) is all of G.

The uniqueness implies that each elt h € G~ K (an h
exists, since pg > q) necessarily has order p. And h
commutes with each chosen k € K \ {e}. O

Proof of (51). We proceed in four steps.

[There exists an order-q element in Gj.
FTSOC, suppose no elt * € G\ {e} has order-g;
so each x has order-p. Since p is prime, the order-p
elts come in equivalence classes, {x,22,...,2zP~'}, of
size p—1. Hence p—1 must divide Ord(G) — 1. But

pq—1 = [p—1]g+[q—1],

so this would imply p—1 ¢ g—1. But this xs (507).
The wupshot: There exists an order-q cyclic
subgp K C G.

[This order-q subgp is unique}. Were  there
another, call it H, then

HnNnK = {e},
since g is prime. From (49%), then,
HK| = 29,

But inequality |G| > |HK| implies p > g; a contra-
diction. So there is but one order-q subgp.

LThe normalizer Ng(K) = Gj. Conjugating K
must give a subgp isomorphic to K; thus is K itself.

(The centralizer is all of G]. Let € := Cg(K)
denote the centralizer. Since K is cyclic, it is abelian.
So K C € C G. By Lagrange's thm, then,

g < [€ < pg.

Since p is prime, ISTShow that |C| # q.

Sylow Thms

Prof. JLF King

Were |C| = g, then the quotient gp

Ng(K) note @G

c K

would have order p. This quotient is gp-isomorphic
to a subgp of Aut(K'). Consequently

p ¢ Ord(Aut(K)).

But K is finite-cyclic, so Aut(K) is gp-isomorphic to
®(q),-). Thus p divides ¢(q) 222 g—1. But this
( ¢

annoys (507). ¢

What are some examples of this thm?

Works: Fails: | Why

p<qll p<gq fails

5<T7| 3<q|2¢qqg-1
5<19|5<11| 5410
5<23 | 5<13 4 ¢ 12
7T<11 || 7T<13 6o 12
T<17T||7<19| 6418

Sylow Thms

First a preliminary.

52: Lemma.

*: p ’G.‘Y‘

Finite groups Y <1 G and prime p have

note  #¢
#Y -

Suppose an x € G has Ord(z) = p*, for some
natnum L. Then x € Y. O

Proof. Let Q := % The homomorphism G—(Q) is
surjective, so ¢ = Ordg(zY) ¢ Ord(z) = p*. Thus
q is a power-of-p. But ¢ must divide Ord(Q)k, by
Lagrange, hence is coprime to p. The only such power-
of-pisgq=p°=1.SozY =Y,ie, z €Y. ¢

Remark. Dropping the normality Y <1 G can cause the result
to fail. With G := S3, let Y be the order-2 subgp generated by
a 2-cycle, and let x be a different 2-cycle. a
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53: Coro.  Suppose Y € Syl,(G), and H C G is a
p-group. If H C Ng(Y'), then H C Y. O

Proof. Let N := Ng(Y). Since Y is Sylow-p, index
|G- Y| is coprime to p. But |G'Y| = |G 'N|-|N.vY|,
so p $|N.Y|. We may thus apply (52) to groups ¥ <
N, to conclude:

Ve € N: If Ord(z) is a power-of-p,
thenx €Y.

By hyp., H C N. Each x € H necessarily has order
a power-of-p, since H does. Sox € Y. Thus H C V.4

Conventions. In this section, G is always a
finite gp; let N = Ord(G). Fix a prime p and write
Ord(G) = p" - n, with n L p. A subgroup K C G is
a “p-Sylow subgroup of G” if #Ord(K) = p~. Our
standing convention is:

Subgroups Y, X C G are p-Sylow, and H C

o G is a p-subgroup.

Henceforth I use 5 to represent p and L = 4. So
625 o N $3125. Let Y be the set of 5-Sylow subgps
of G.

We will consider G acting on Y via conjugation:
For an =z € GG, the action of x on Y € Y is conjugation
Kw— aKz™

55: Sylow Thm.

a: For each Po5 5¥<625, there exists a G-subgroup H,
with #H = 5¥.

b: There exists a Sylow subgp. lL.e, Y is non-empty.

c¢: Fach Pob subgp H lies inside some 5-Sylow sub-
group K. Indeed, for each G-orbit O C Y. there
exists a K € O with .

d: The 5-Sylow subgps Y form one single G-orbit.
Furthermore

#Y o  Ord(G)
Y o= 1. O

The fol. lemma and proof is broken.

Further results on Sylow subgroups
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56: Lemma. G D H finite groups The index
N(H) e(H)|

When H is a cyclic p-group, i.e

o=

divides |Aut(H)|.
|H| = p&+1, then

1 r o pf[p-1].
Suppose H € Syl,(G) is abelian. Then each of
|G Ne(H)|, [Ne(H)-eq(H)|, [Cc(H) H|
is co-prime to p. Consequently:
T+ If H € Syl,(G) is cyclic then r 1 p—1.

If () and p is the smallest prime dividing |G|, then
[Ng(H) = Gg(H)}, since (Lagrange) r divides |G|. ¢

Grouply-unique

Unfinished: as of 30ct2018

Further results on Sylow subgroups

57: Thm. Consider finite gps G> N and H € Syl;(G).
Then the intersection H N N is €Syls(N). O

Proof. Since it is a subgroup of H, this HNN is a 5-gp.
So it has an extension N € Syls(N) with N > H N N.
This N is a 5-gp, so ¢t has an extension to a
G e Syls(G). Evidently I := GNN is a 5-group
and a subgp of N. But I D N , and N has maximum
cardinality among 5-subgps of N. Consequently

*3 GNN = N,

since the groups are finite.
By Sylow, G is conjugate to H; there is an z € G
with G2t = H. From (x), then,
eNzb = 2Gz' NnaNz' = HNN.
(xNa™'=N since N < G.) Thus HNN has the cardinality
of a 5-Sylow subgp of N, so it is one. (And therefore
HNAN=N.) ¢

58: Theorem. Consider finite gps G > N and suppose
H € Syl;(G). Then % is a 5-Sylow subgp of % O

Proof.
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Normal subgroups

For this section N is a natnum. Here is the theorem
we are shooting for:

59: Thm.  For each N € N\ {4}, the alternating
group Ay is simple. O

Remark. The alternating groups Ag, A1, Ao (i.e, compris-
ing all the even permutations) are each the triv-gp, hence
simple. Since Ord(A3)=3 is prime, group As is sim-
ple. So the first case we need consider is N > 5. Some
of the lemmas below hold for lower V.

Let a solo 3-cycle mean a perm whose cycle
lengths are 3, 1,1, V2 1. O

60: 3-cycle Lemma. The solo 3-cycles generate Apn.Q
Proof.

61: Lemma. Suppose m € Ay has a 3-cycle. Let K be
the smallest normal subgp of Ay owning 7. Then K
has a solo 3-cycle. O

Proof.

Notes to me. Bertrand Postulate.

Burnside's Normal p-complement Theorem.
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