Basic Algebra definitions

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/
3 October, 2018 (at 08:54)

Semigroups. For us, a *semigroup* is a triple (S, \bullet, \mathbf{e}) , where \bullet is an associative binary operation on set S, and $\mathbf{e} \in S$ is a two-sided identity elt. $^{\heartsuit 1}$ Axiomatically:

G1: Binop • is **associative**, i.e $\forall \alpha, \beta, \gamma \in S$, necessarily $[\alpha \bullet \beta] \bullet \gamma = \alpha \bullet [\beta \bullet \gamma]$.

G2: Elt **e** is a *two-sided identity element*, i.e $\forall \alpha \in S: \alpha \bullet \mathbf{e} = \alpha \text{ and } \mathbf{e} \bullet \alpha = \alpha.$

Moreover, we call S a qroup if t.fol also holds.

G3: Each elt admits a *two-sided inverse element*: $\forall \alpha, \ \exists \beta \text{ such that } \alpha \bullet \beta = \mathbf{e} \text{ and } \beta \bullet \alpha = \mathbf{e}.$

When the binop is '+', then we write the inverse of α as $-\alpha$ and call it "negative α ".

If we refer to the binop as 'multiplication' then write the inverse of α as α^{-1} and call it "the **reciprocal** of α ". Also, we usually omit the binop-symbol and write $\alpha\beta$ for $\alpha \cdot \beta$.

For an abstract binop '•', we usually write α^{-1} for the inverse of α , and we call it " α inverse". If • is **commutative** $[\forall \alpha, \beta, \text{ necessarily } \alpha \bullet \beta = \beta \bullet \alpha]$ then we call S a **commutative** (**semi**)**group**.

Rings/Fields. A *ring* is a five-tuple $(\Gamma, +, 0, \cdot, 1)$ with these axioms.

R1: Elements 0 and 1 are distinct; $0 \neq 1$.

R2: Triple $(\Gamma, +, 0)$ is a commutative group.

R3: Triple $(\Gamma, \cdot, 1)$ is semigroup.

R4: Mult. **distributes-over** addition from the *left*, $\alpha[x+y] = [\alpha x] + [\alpha y]$, and from the *right*, $[x+y]\alpha = [x\alpha] + [y\alpha]$; this, for all $\alpha, x, y \in \Gamma$.

Fix $\alpha \in \Gamma$. Elt $\beta \in \Gamma$ is a "(two-sided) annihilator of α " if $\alpha\beta = 0 = \beta\alpha$. An α is a (two-sided) zero-divisor if it admits a non-zero annihilator. So 0 is a ZD, since $0 \cdot 1 = 0 = 1 \cdot 0$, and $1 \neq 0$. We write the set of Γ -zero-divisors as

$$ZD_{\Gamma}$$
 or $ZD(\Gamma)$.

An $\alpha \in \Gamma$ is a Γ -unit if $\exists \beta \neq 0$ st. $\alpha \beta = 1 = \beta \alpha$. Use Units Γ or Units Γ)

for the units group. In the special case when Γ is \mathbb{Z}_N , I will write Φ_N or $\Phi(N)$ for its units group, to emphasize the relation with the Euler-phi fnc, since $\varphi(N) := |\Phi_N|$.

Integral domains, Fields. A commutative ring [commRing] is a ring in which the multiplication is commutative. A commRing with \underline{no} (non-zero) zero-divisors [i.e $ZD_{\Gamma} = \{0\}$] is called an integral domain, [intDomain] or sometimes just a domain.

An intDomain F in which every non-zero element is a unit, $\operatorname{Units}(F) = F \setminus \{0\}$, is a **field**. I.e, F is a commRing such that triple $(F \setminus \{0\}, \cdot, 1)$ is a group.

Examples. Every ring has the "trivial zero-divisor" — zero itself. The ring of integers doesn't have others. In contrast, the non-trivial zero-divisors of \mathbb{Z}_{12} comprise $\{\pm 2, \pm 3, \pm 4, 6\}$.

In \mathbb{Z} the units are ± 1 . But in \mathbb{Z}_{12} , the ring of integers mod-12, the set of units, $\Phi(12)$, is $\{\pm 1, \pm 5\}$. In the ring \mathbb{Q} of rationals, *each* non-zero element is a unit. In the ring $\mathbb{G} := \mathbb{Z} + i\mathbb{Z}$ of *Gaussian integers*, the units group is $\{\pm 1, \pm i\}$. [Aside: Units(\mathbb{G}) is cyclic, generated by i. And Units(\mathbb{Z}_{12}) is not cyclic. For which N is $\Phi(N)$ cyclic?]

^{♥1}What I'm calling a semigroup is usually called a *monoid*. The std defn of *semigroup* does not require an identity-elt.

Irreducibles, Primes. Consider a commutative ring $(\Gamma, +, 0, \cdot, 1)$. An elt $\alpha \in \Gamma$ is a **zero-divisor** (abbrev **ZD**) if there exists a **non-zero** $\beta \in \Gamma$ st. $\alpha\beta = 0$. In contrast, an element $u \in \Gamma$ is a **unit** if $\exists w \in \Gamma$ st. $u \cdot w = 1$. (This w is the "multiplicative inverse" of u, is unique, and is often written u^{-1} .) Exer 1: In an arbitrary ring Γ , the set $ZD(\Gamma)$ is **disjoint** from Units (Γ) .

An element α is:

- i: Γ -irreducible if α is a non-unit, non-ZD, such that for each Γ -factorization $\alpha = x \cdot y$, either x or y is a Γ -unit. [Restating, using the definition below: Either $x \approx 1, y \approx \alpha$, or $x \approx \alpha, y \approx 1$.]
- ii: Γ -prime if α is a non-unit, non-ZD, such that for each pair $c,d \in \Gamma$: If $\alpha \bullet [c \cdot d]$ then either $\alpha \bullet c$ or $\alpha \bullet d$.

Associates. In a *commutative* ring, elts α and β are **associates**, written $\alpha \sim \beta$, if $\alpha \triangleleft \beta$ and $\alpha \triangleleft \beta$ [i.e, $\alpha \in \beta\Gamma$ and $\beta \in \alpha\Gamma$]. They are **strong associates**, written $\alpha \approx \beta$, if there exists a unit u st. $\beta = u\alpha$.

Ex 2: Prove Strong- $Assoc \Rightarrow Assoc$.

Ex 3: If $\alpha \sim \beta$ and $\alpha \notin ZD$, then α, β are **strong** associates.

Ex 4: In \mathbb{Z}_{10} , zero-divisors 2,4 are associates. Are they strong associates?

Ex 5: With $d \triangleleft \alpha$, prove: If α is a non-ZD, then d is a non-ZD. And: If α is a unit, then d is a unit.

1: Lemma. In a commRing Γ , each prime α is irreducible. \Diamond

Proof. Consider factorization $\alpha = xy$. Since $\alpha \bullet xy$, WLOG $\alpha \bullet x$, i.e $\exists c$ with $\alpha c = x$. Hence

*:
$$\alpha = xy = \alpha cy$$
.

By defn, $\alpha \notin \mathrm{ZD}$. We may thus cancel in (*), yielding 1 = cy. So y is a unit.

There are rings^{\bigcirc 2} with irreducible elements p which are nonetheless not prime. However...

2: Lemma. Suppose commRing Γ satisfies the Bézout condition, that each GCD is a linear-combination. Then each irreducible α is prime.

Proof. Suppose $\alpha \triangleleft xy$ and WLOG $\alpha \nmid x$. Let $g := \text{GCD}(\alpha, x)$. Were $g \approx \alpha$, then $\alpha \triangleleft g \triangleleft x$, a contradiction. Thus, since α is irreducible, our $g \approx 1$.

Bézout produces $S,T \in \Gamma$ with

$$1 = S\alpha + Tx$$
. Hence
*: $y = S\alpha y + Txy = Sy\alpha + Txy$.

By hyp, $\alpha \bullet xy$, hence α divides RhS(*). So $\alpha \bullet y$.

Example where $\sim \neq \approx$. Here a modification of an example due to Kaplansky.

Let Ω be the ring of real-valued cts fncs on [-2, 2]. Define $\mathcal{E}, \mathcal{D} \in \Omega$ by: For $t \ge 0$:

$$\mathcal{E}(t) = \mathcal{D}(t) := \begin{cases} t - 1 & \text{if } t \in [1, 2] \\ 0 & \text{if } t \in [0, 1] \end{cases}.$$

And for $t \leq 0$ define

$$\mathcal{E}(t) := \mathcal{E}(-t)$$
 and $\mathcal{D}(t) := -\mathcal{D}(-t)$.

[So \mathcal{E} is an Even fnc; \mathcal{D} is odD.] Note $\mathcal{E} = f\mathcal{D}$ and $\mathcal{D} = f\mathcal{E}$, where

$$f(t) := \begin{cases} 1 & \text{if } t \in [1, 2] \\ t & \text{if } t \in [-1, 1] \\ -1 & \text{if } t \in [-2, -1] \end{cases}.$$

Hence $\mathcal{E} \sim \mathcal{D}$. [This f is not a unit, since f(0) = 0 has no reciprocal. However, f is a non-ZD: For if $fg = \mathbf{0}$, then g must be zero on $[-2, 2] \setminus \{0\}$. Cty of g then forces $g = \mathbf{0}$.]

Could there be a unit $u \in \Omega$ with $u\mathcal{D} = \mathcal{E}$? Well

$$u(2) = \frac{\mathcal{E}(2)}{\mathcal{D}(2)} \xrightarrow{\text{note}} 1$$
, and $u(-2) = \frac{\mathcal{E}(-2)}{\mathcal{D}(-2)} \xrightarrow{\text{note}} -1$.

Cty of u() forces u to be zero somewhere on (-2,2), hence u is not a unit.

Back to Semigroups

Consider a not-nec-commutative semigroup (S, \bullet, \mathbf{e}) and an $x \in S$. An elt $\lambda \in S$ is a "left inverse of x"

 $^{^{\}circ 2}$ Consider the ring, Γ, of polys with coefficients in \mathbb{Z}_{12} . There, $x^2 - 1$ factors as [x - 5][x + 5] and as [x - 1][x + 1] Thus none of the four linear terms is prime. Yet each is Γ-irreducible. (Why?) This ring Γ has zero-divisors (yuck!), but there are natural subrings of \mathbb{C} where Irred $\not\Rightarrow$ Prime.

if $\lambda \bullet x = \mathbf{e}$. Of course, then x is a **right inverse** of λ . Use $\mathbf{LInv}/\mathbf{RInv}$ for "left/right inverse".

We will often suppress the binop-symbol and write xy for $x \bullet y$.

3: Prop'n. In a semigroup (S, \bullet, \mathbf{e}) :

- i: For each $x \in S$: If x has at least one LInv and one RInv, then x has a unique LInv and RInv, and they are equal.
- ii: Suppose every elt of S has a right-inverse. Then S is a group. \diamondsuit

Proof of (i). Suppose λ is a LInv of x, and ρ a RInv. Then

$$\lambda \ = \ \lambda[x\rho] \ = \ [\lambda x]\rho \ = \ \rho \, .$$

And if two LInvs, then $\lambda_1 = \rho = \lambda_2$.

Proof of (ii). Given $x \in S$, pick a RInv r and a RInv to r, call it y. Now

$$x = x \bullet [ry] = [xr] \bullet y = y.$$

Hence r is both a left <u>and</u> right inverse to x. Etc. \blacklozenge

In the next lemma, we **neither** assume *existence* of left-identity/left-inverses, **nor** do we assume *uniqueness* of right-identity/right-inverses.

4: Lemma. Suppose \ltimes is an associative binop on S, and $\mathbf{e} \in S$ is a righthand-identity elt. Suppose that each $y \in S$ has a righthand inverse, y'. Then:

4a: If $y \ltimes y = y$, then $y = \mathbf{e}$.

Moreover:

4b: Each y' is also a left inverse to y, and e is also a lefthand-identity.

Thus
$$(S, \ltimes, \mathbf{e})$$
 is a group,

Pf (4a). Note $y = y \ltimes \mathbf{e} = y \ltimes [y \ltimes y'] = [y \ltimes y] \ltimes y'$. By hypothesis $y \ltimes y = y$, so the above asserts that $y = y \ltimes y' \xrightarrow{\text{note}} \mathbf{e}$.

Pf of (4b). First let's show that every RInv, y', of y, is also a LInv of y. Let $b := [y' \ltimes y]$. Courtesy (4a), it is enough to show that $b \ltimes b = b$. And

$$b \ltimes b = [y' \ltimes [y \ltimes y']] \ltimes y, \text{ by assoc.,}$$
$$= [y' \ltimes \mathbf{e}] \ltimes y$$
$$= y' \ltimes y \xrightarrow{\text{note}} b.$$

We can now show that **e** is also a *left*hand identity. After all, $\mathbf{e} \ltimes y = [y \ltimes y'] \ltimes y = y \ltimes [y' \ltimes y] = y \ltimes \mathbf{e}$, since y' is a LHInverse. I.e, $\mathbf{e} \ltimes y = y$.

Henceforth, groups $^{\heartsuit 3}$ are the subject.

Cyclic groups

I use Cyc_N for the order-N cyclic group. By default, it is written multiplicatively, but I may write $(\operatorname{Cyc}_N, \cdot)$ or $(\operatorname{Cyc}_N, +)$ to indicate specifically. The infinite group $\operatorname{Cyc}_\infty$ is iso to $(\mathbb{Z}, +)$.

For $y \in G$ we use $\operatorname{Periods}_{G}(y)$ for the set of integers k with $y^{k} = \mathbf{e}$. A subgroup $H \subset G$ determines a similar set. Let $P_{H}(y) = P_{H,G}(y)$ be $\{k \in \mathbb{Z} \mid y^{k} \in H\}$. So $\operatorname{Periods}(y)$ is simply $P_{H}(y)$, when H is the trivial subgp $\{\mathbf{e}\}$.

5: Periods Lemma. Fix G, H, y as above, and let P_H mean $P_H(y)$. If P_H is not just $\{0\}$, then $P_H = N\mathbb{Z}$, where N is the least positive element of P_H .

For G-subgroups $H \supset K$, then,

$$\operatorname{H-Ord}_G(y) \bullet \operatorname{K-Ord}_G(y) \bullet \operatorname{Ord}_G(y)$$
.

 (G, \cdot, \mathbf{e}) or $(\Gamma, \cdot, \boldsymbol{\varepsilon})$ or $(G, \cdot, 1)$ or (G, +, 0). The symbol for the neutral [i.e, identity] element may change, according to whether the group name is a Greek letter, or whether the group is written multiplicatively or additively. A *vectorspace* might be written as (V, +, 0). A group of *functions*, under composition, might be written (G, \circ, Id) .

We'll use 1 (a blackboard bold '1') for the *trivial group*, but in specific cases may write $\{e\}$ or $\{0\}$.

Use Cyc_N , \mathbb{S}_N , \mathbb{D}_N for the N^{th} cyclic, symmetric and dihedral groups. So $|\operatorname{Cyc}_N|=N$ and $|\mathbb{S}_N|=N!$ and $|\mathbb{D}_N|=2N$. The alternating group \mathbb{A}_N has $|\mathbb{A}_1|=1$; otherwise, $|\mathbb{A}_N|$ is N!/2. Use $\operatorname{Z}(G)$ for the center of G. The automorphisms of G form a group $(\operatorname{Aut}(G), \circ, \operatorname{Id})$.

Each $x \in G$ yields an *inner automorphism* of G defined by $J_x(g) := xgx^{-1}$. The set $\{J_x\}_{x \in G}$ is written Inn(G); it is a normal subgp of Aut(G). The map $\mathcal{J}: G \to \text{Aut}(G)$ by $\mathcal{J}(x) := J_x$, is a group homorphism.

Proof. Suppose $N := \text{Min}(\mathbb{Z}_+ \cap P_H)$ is finite. Fixing a $k \in P_H$, we will show that $k \models N$.

Set $D := \operatorname{GCD}(N, k)$. LBolt (well, Bézout's lemma) produces integers such that D = NS + kT. Hence $D \in P_H$, since y^D equals $[y^N]^S \cdot [y^k]^T = \mathbf{e}^S \cdot \mathbf{e}^T$. Thus $N = D \bullet k$.

6: Defn. Use H-Ord(y) or H-Ord $_G(y)$ for the above N; else, if P_H is just $\{0\}$ then H-Ord $(y) := \infty$. Call this the "H-order of y". The order of y, written Ord(y) or $Ord_G(y)$, is simply H-Ord $_G(y)$ when $H := \{e\}$. \square

Suppose $H \triangleleft G$. Now $[yH]^k = y^kH$, so $[yH]^k = H$ IFF $y \in H$. In terms of the quotient group,

5':
$$\forall y \in G$$
: $\operatorname{Ord}_{G/H}(yH) = \operatorname{H-Ord}_G(y) \bullet \operatorname{Ord}_G(y)$.

Dihedral groups

The *Klein-4* group is isomorphic to $\text{Cyc}_2 \times \text{Cyc}_2$. Often called the *Vierergruppe*, it has presentation

7:
$$V := \left\langle \mathtt{a},\mathtt{b},\mathtt{c} \right| \left. \begin{array}{l} \text{Each of } \{\mathtt{a},\mathtt{b},\mathtt{c}\} \text{ is an involution,} \\ \text{each pair commutes, and the product of each two equals the third.} \end{array} \right\rangle$$

Using fewer generators, but less symmetric, is this presentation:

7':
$$V = \langle a, b \mid a^2 = e = b^2, a \leftrightarrows b \rangle$$
.

For each posint N, the N^{th} dihedral group is

8:
$$\mathbb{D}_N := \langle \mathbf{r}, \mathbf{f} \mid \mathbf{f}^2 = \mathbf{e}, \, \mathbf{frfr} = \mathbf{e}, \, \mathbf{r}^N = \mathbf{e} \rangle;$$
 $\mathbb{D}_{\infty} := \langle \mathbf{r}, \mathbf{f} \mid \mathbf{f}^2 = \mathbf{e}, \, \mathbf{frfr} = \mathbf{e} \rangle, \, \text{for } N = \infty.$

Now for some straightforward facts.

9: Fact. For all $N \in [1..\infty]$ and integers j:

$$\mathbf{r}^j \cdot \mathbf{f} = \mathbf{f} \cdot \mathbf{r}^{-j}$$
.

Lastly,
$$\operatorname{Ord}(\mathbb{D}_N) = 2N$$
, and $\operatorname{Ord}(\mathbb{D}_\infty) = \aleph_0$.

10: Lemma. Groups $\mathbb{D}_1 \cong \operatorname{Cyc}_2$ and $\mathbb{D}_2 \cong \operatorname{Cyc}_2 \times \operatorname{Cyc}_2$ (the Vierergruppe), so each has full center and trivial $\operatorname{Inn}()$ -group.

For each $N \in [3..\infty]$:

Both $Z(\mathbb{D}_{\infty})$ and $Z(\mathbb{D}_{N \text{ odd}})$ are trivial. Consequently $Inn(\mathbb{D}_{\infty}) \cong \mathbb{D}_{\infty}$ and $Inn(\mathbb{D}_{N \text{ odd}}) \cong \mathbb{D}_{N}$.

When N = 2K is even: The center $Z(\mathbb{D}_{2K}) = \{\mathbf{e}, \mathbf{r}^K\}$. Consequently $\mathbb{D}_K \cong \operatorname{Inn}(\mathbb{D}_{2K})$ via the map

$$\mathtt{r}^j \mapsto J_{\mathtt{r}^k} \quad ext{and} \quad \mathtt{fr}^j \mapsto J_{\mathtt{fr}^k} \,, \quad ext{Improve this!}$$

where
$$k \coloneqq [j \mod K]$$
.

Proof. The commutator $[r^j, f]$ equals

$${ t r}^j { t f} { t r}^{-j} { t f}^{-1} \ = \ { t r}^{2j} { t f}^2 \ = \ { t r}^{2j} \, .$$

Thus $\mathbf{r}^j \leftrightarrows \mathbf{f}$ IFF $2j \not\models N$. So the only possible ntelement in the center is \mathbf{r}^K , where $N = 2K < \infty$. And \mathbf{r}^K commutes with each $\mathbf{f}\mathbf{r}^j$.

Normality

Consider two gps $H \subset G$. Say that "H is **normal** in G", written $H \triangleleft G$, if $[\forall x \in G : xHx^{-1} = H]$. This is equivalent (see (19), below) to $[\forall x \in G : xHx^{-1} \subset H]$. However, an individual element x could give proper inclusion, as the following two examples show.

Proper inclusion, $xHx^{-1} \subsetneq H$, forces that $|H| = \infty$ and $\operatorname{Ord}(x) = \infty$ and that G is not abelian.

11: E.g. Let $G := \mathbb{S}_{\mathbb{Z}}$. Let $H \subset G$ comprise those permutations $h:\mathbb{Z}_{\mathbb{Q}}$ st. $[\forall n < 0: h(n) = n]$; i.e, $h \downarrow_{\mathbb{Z}_{-}}$ is the identity-fnc.

Define $x \in G$ by x(n) := n-5. For n negative,

$$\uparrow: n \xrightarrow{x} n-5 \xrightarrow{h} n-5 \xrightarrow{x^{-1}} n$$

for an arbitrary $h \in H$. Consequently, $xHx^{-1} \subset H$.

Note that (†) holds for all n < 5. So no elt $\eta \in H$ which moves something in [0..5), e.g, $\eta(2) = 3$, can possibly be in xHx^{-1} . We have thus $xHx^{-1} \subsetneq H$, proper inclusion.

12: *E.g.* Kevin Keating tells me that the following is a standard example.

In $G := \operatorname{GL}_2(\mathbb{Q})$, the shear $S := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ generates $H := \langle S \rangle_G$, which is a copy of $(\mathbb{Z}, +)$. Conjugating by $X := \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ produces $(XSX^{-1} = S^2)$. Consequently,

$$\mathsf{X}H\mathsf{X}^{-1} \ = \ \left\{ \left[egin{smallmatrix} 1 & 2n \\ 0 & 1 \end{smallmatrix} \right] \ \middle| \ n \in \mathbb{Z}
ight\}.$$

This is a proper subset of H.

13: Defn. For subsets $N, \Gamma \subset G$, let $N\Gamma$ mean the set of products $x\alpha$, over all $x \in N$ and $\alpha \in \Gamma$. Even when N and Γ are subgroups, the product $N\Gamma$ need not be a subgroup.

I.e, let \mathbf{r}, \mathbf{f} be the rotation and flip in $G := \mathbb{D}_3$. Subgroups $\mathbf{N} := \{\mathbf{e}, \mathbf{f}\}$ and $\Gamma := \{\mathbf{e}, \mathbf{fr}\}$ make $\mathbf{N}\Gamma$ equal $\{\mathbf{e}, \mathbf{f}, \mathbf{fr}, \mathbf{r}\}$. This is not a group, since it does not own \mathbf{r}^2 . **14:** Lemma. If at least one of the subgroups $N, \Gamma \subset G$ is normal in G, then $\Gamma N = N\Gamma$, and this product is itself a G-subgroup. \diamondsuit

Proof. (Use letters $x, y \in \mathbb{N}$ and $\alpha, \beta \in \Gamma$.) WLOG $\mathbb{N} \triangleleft G$. Thus $x' := \beta x \beta^{-1}$ is an N-element. Hence $\beta x \in \Gamma \mathbb{N}$ equals $x'\beta$. Consequently, $\Gamma \mathbb{N} \subset \mathbb{N}\Gamma$. By symmetry, then, $\Gamma \mathbb{N} = \mathbb{N}\Gamma$.

Why is N Γ sealed under multiplication? Well, $y\beta \cdot x\alpha$ equals $yx'\beta\alpha \in N\Gamma$. Finally, the inverse $x\alpha = \alpha^{-1}x^{-1} \in \Gamma N = N\Gamma$.

Defn. Two subgroups $N, \Gamma \subset \widehat{G}$ are *transverse*, written $N \perp \Gamma$, if $N \cap \Gamma = \{e\}$. Always, the map

15:
$$f: \mathbb{N} \times \Gamma \to \mathbb{N}\Gamma$$
, by $(x, \omega) \mapsto x\omega$,

is onto. It is injective IFF N and Γ are transverse. The following result characterises direct product. \square

16: Direct-product Lemma. Suppose $N, \Gamma \subset \widehat{G}$ groups, with $N \lhd \widehat{G}$, and $N \perp \Gamma$. Let

$$G := \langle N, \Gamma \rangle_{\widehat{G}} \stackrel{note}{=} N\Gamma.$$

Recalling the bijection. $f: \mathbb{N} \times \Gamma \to G$ from (15), the following are equivalent:

 $i: N \leftrightarrows \Gamma$, inside G.

ii: f is a homomorphism, hence isomorphism.

$$iii$$
: $\Gamma \triangleleft G$.

 $Pf(i) \Rightarrow (ii)$. Does f respect multiplication? Checking,

$$f((x,\alpha)) \cdot f((y,\beta)) \stackrel{\text{def}}{=} x\alpha \cdot y\beta = xy\alpha\beta,$$

since $N \hookrightarrow \Gamma$. And this equals $f((xy, \alpha\beta))$.

$$Pf(ii) \Rightarrow (iii)$$
. Always $\{e\} \times \Gamma \triangleleft N \times \Gamma$. Now apply $f. \blacklozenge$

Pf (iii) \Rightarrow (i). With $x \in \mathbb{N}$ and $\alpha \in \Gamma$, we need to show that x = e.

Note that $\alpha x^{-1} \alpha^{-1} \in \mathbb{N}$, since $\mathbb{N} \triangleleft \widehat{G}$. Hence

$$x \cdot \alpha x^{-1} \alpha^{-1} \in NN \subset N$$
.

And $x\alpha x^{-1} \in \Gamma$, since $\Gamma \triangleleft G$. So $x\alpha x^{-1} \cdot \alpha^{-1} \in \Gamma$. Thus $[\![x,\alpha]\!] \in \mathbb{N} \cap \Gamma$, so $[\![x,\alpha]\!] = \mathbf{e}$.

Defn. Let SurEnd(G) denote the semigroup of surjective endomorphisms of G. Evidently

17:
$$\operatorname{Inn}(G) \subset \operatorname{Aut}(G) \subset \operatorname{SurEnd}(G) \subset \operatorname{End}(G)$$
.

Any of these inclusions can be strict, depending on the group.

Here are various strengthenings of the notion "H is a normal subgroup of G". They are defined by how many homomorphisms $\psi:G \supseteq S$ send H into itself.

Suppose that
$$\overline{\psi(H)} \subset H$$
 for every ...

Which Homs? Then written as ... $\psi \in \text{Inn}(G)$ $H \triangleleft G$

18: ... $\psi \in \text{Aut}(G)$ $H \stackrel{a}{\triangleleft} G$... $\psi \in \text{SurEnd}(G)$ $H \stackrel{se}{\triangleleft} G$... $\psi \in \text{End}(G)$ $H \stackrel{e}{\triangleleft} G$

19: Note. In the $H \triangleleft G$ and $H \stackrel{a}{\triangleleft} G$ cases, we may conclude that each (inner-)automorphism α in fact gives equality $\alpha(H) = H$. This, because inclusion $\psi(H) \subset H$ must hold for both $\psi := \alpha$ and $\psi := \alpha^{-1}$.

In the examples below, $H, K \subset (G, \cdot, \mathbf{e})$ are groups. Abbrev the normalizer $\mathcal{N} := \mathcal{N}(H) := \mathcal{N}_G(H)$ and centralizer $\mathcal{C} := \mathcal{C}(H) := \mathcal{C}_G(H)$ of subgp H.

20: E.g. Each $x \in G$ engenders a conjugation map $J_x:G \supseteq$ by

$$J_x(g) := xgx^{-1}$$
.

Easily $J_y \circ J_x = J_{yx}$. Conjugations are called *inner automorphisms* of G; the group of conjugations is written Inn(G). This map

21:
$$\mathcal{J}: G \rightarrow \operatorname{Inn}(G): x \mapsto J_x$$

is a surjective gp-homomorphism. Its kernel is the center Z(G). So Z(G) \lhd G and

22:
$$\operatorname{Inn}(G) \cong \frac{G}{\operatorname{Z}(G)}.$$

A slight generalization, taking a subgp H, is to map

21':
$$\mathcal{J}_H: \mathcal{N}_G(H) \to \operatorname{Aut}(H): x \mapsto J_x \downarrow_H$$
.

Its kernel is the centralizer $\mathcal{C}_G(H)$. So $\frac{\mathcal{N}(H)}{\mathcal{C}(H)}$ is group-isomorphic to the subgroup

$$A := \operatorname{Range}(\mathcal{J}_H) \subset \operatorname{Aut}(H)$$
.

23: Lemma. Suppose |G:H|=2. Then $H \triangleleft G$.

Pf. Pick $b \in G \setminus H$. Since the index is 2,

$$[bH] \sqcup H \ = \ G \ = \ [Hb] \sqcup H \ .$$

Thus the left and right coset-partitions are equal. So $H \triangleleft G$.

Remark. Index |G:H| = 2 need not imply the stronger $H \stackrel{a}{\lhd} G$. In the Vierergruppe, (7'), the $\langle a \rangle_V$ subgroup has index 2 in V. Yet the automorphism that exhanges a and b moves $\langle a \rangle$.

Also, |G:H|=3 is not sufficient to imply normality. In \mathbb{D}_3 , the non-normal subgp $\langle \mathbf{f} \rangle$ has index 3.

24: Lem. Consider groups $H \subset G \subset F$. Then

25:
$$[H \overset{a}{\lhd} G \overset{a}{\lhd} F] \implies H \overset{a}{\lhd} F.$$

$$[H \overset{a}{\lhd} G \lhd F] \implies H \lhd F.$$

And
$$[H \stackrel{e}{\triangleleft} G \stackrel{e}{\triangleleft} F] \Rightarrow H \stackrel{e}{\triangleleft} F$$
. Proof. Use (19). \Diamond

Ques. Does $[H \stackrel{se}{\lhd} G \stackrel{se}{\lhd} F]$ imply $H \stackrel{se}{\lhd} F$? A CEX necessarily has G infinite, since there would be a $\psi \in \operatorname{SurEnd}(F)$ which maps G properly inside $G.\square$

27: Normal Grabbag.

- i: For two subgps H, K of G, let $\overset{?}{\triangleleft}$ be the strongest normality so that both $H, K \overset{?}{\triangleleft} G$. Then the commutator-subgp $\llbracket H, K \rrbracket \overset{?}{\triangleleft} G$.
- ii: The center $Z(G) \stackrel{se}{\lhd} G$, but not necessarily $\stackrel{e}{\lhd}$.

iii:
$$Inn(G) \triangleleft Aut(G)$$
, but not necessarily $\stackrel{a}{\triangleleft}$.

Pf of (i). Take an-endomorphism $x \mapsto \hat{x}$ of the appropriate type. Fix $h \in H$ and $k \in K$. By hypothesis, $\hat{h} \in H$ and $\hat{k} \in K$. Thus

$$\llbracket H, K \rrbracket \ \ni \ \llbracket \widehat{h}, \widehat{k} \rrbracket \ \stackrel{\text{note}}{===} \ \widehat{\llbracket h, k \rrbracket} \ .$$

Pf of (ii). Take an onto-endomorphism $x \mapsto \hat{x}$ and a point $z \in Z(G)$. To show $\hat{z} \in Z(G)$, we fix a $g \in G$ and show that $g\hat{z}g^{-1} = \mathbf{e}$. Since the endo is surjective, there exists an $\gamma \in G$ such that $\hat{\gamma} = g$.

Now $z \leftrightarrows \gamma$, so $\mathbf{e} = \gamma z \gamma^{-1}$. Thus

$$\mathbf{e} \ = \ \widehat{\gamma z \gamma^{-1}} \ = \ \widehat{\gamma} \cdot \widehat{z} \cdot \widehat{\gamma}^{-1} \ = \ g \cdot \widehat{z} \cdot g^{-1} \, . \qquad \blacklozenge$$

Pf of (ii) bis. We produce an endomorphism, of a group $G := \Omega \times D$, which carries its center Z(G) outside of itself. Here, $\Omega = \{\omega, \varepsilon\}$ is an order-2 group generated by ω . And $D := \mathbb{D}_3$ is a dihedral group; use **e** for its neutral elt. So the center of G is

$$Z(G) = Z(\Omega) \times Z(D) = \Omega \times \{e\}.$$

Let f be a flip in \mathbb{D}_3 ; it generates an order-2 subgp $\{f, \mathbf{e}\} =: F \subset D$. The Klein-4 group $\Omega \times F$ has an "exchange the generators" automorphism, \mathcal{A} , with

$$\mathcal{A}((\omega, \mathbf{e})) := (\varepsilon, \mathbf{f})$$
 and $\mathcal{A}((\varepsilon, \mathbf{f})) := (\omega, \mathbf{e})$.

defined by exhanging the generators of subgps Ω and F. Finally, consider the endomorphism $\mathcal{E}: G \to G$ which collapses the D side:

For all
$$\alpha \in \Omega$$
 and $x \in D$: $\mathcal{E}((\alpha, x)) := (\alpha, e)$.

Finally, the composition $\mathcal{E} \triangleright \mathcal{A}$ is a G-endo which carries $\Omega \times \{\mathbf{e}\}$ to $\{\mathbf{e}\} \times F$.

Pf of (iii). [Keating emailed me this. This in fact may have been my original example.] Note that \mathbb{D}_4 has exactly two subgroups isomorphic to the Vierergruppe,

$$V := \langle \mathbf{r}^2, \mathbf{f} \rangle = \{ \mathbf{e}, \mathbf{r}^2, \mathbf{f}, \mathbf{f} \mathbf{r}^2 \}$$
 and $V' := \langle \mathbf{r}^2, \mathbf{f} \mathbf{r} \rangle = \{ \mathbf{e}, \mathbf{r}^2, \mathbf{f} \mathbf{r}, \mathbf{f} \mathbf{r}^3 \}$.

And $\alpha(V) = V'$, where $\alpha \in \operatorname{Aut}(\mathbb{D}_4)$ is the automorphism which sends $\mathbf{r} \mapsto \mathbf{r}$ and $\mathbf{f} \mapsto \mathbf{fr}$.

Now for the example. Let $G := \mathbb{D}_4$. Check that $A := \operatorname{Aut}(\mathbb{D}_4) \cong \mathbb{D}_4$. Its subgp $S := \operatorname{Inn}(\mathbb{D}_4) \cong \mathbb{D}_2$ is isomorphic to a Vierergruppe. One can interpret the above α as in $\operatorname{Aut}(A)$, and as carrying S to the *other* copy of the Vierergruppe.

Examples of normal subgps. On \mathfrak{D} -dim'al Euclidean space $\mathbb{R}^{\mathfrak{D}}$, let G_{Trans} be the group of translations. Then G_{Trans} is normal inside the gp of all isometries. Indeed, G_{Trans} is normal in the gp of invertible affine maps $\mathbb{R}^{\mathfrak{D}}$.

Proof. On $\mathbf{V} := \mathbb{R}^{\mathfrak{D}}$, each vector $\boldsymbol{\kappa} \in \mathbf{V}$ yields a translation $\mathsf{T}_{\boldsymbol{\kappa}} : \mathbf{V} \odot$ by $\mathsf{T}_{\boldsymbol{\kappa}}(\mathbf{v}) := \mathbf{v} + \boldsymbol{\kappa}$. Evidently a linear $\mathsf{L} : \mathbf{V} \odot$ has commutation

$$L \circ T_{\kappa} = T_{L(\kappa)} \circ L$$
.

Consequently, a general (we want "invertible") affine map can be written $A := L \circ T$, for some linear L and translation T;

So to show G_{Trans} normal in the affines, it is enough to conjugate by an invertible linear map, L. Our goal is to show that $\mathsf{L} \circ \mathsf{T}_{\kappa} \circ \mathsf{L}^{-1}$ is some translation. But

$$\mathsf{LT}_{\boldsymbol{\kappa}}\mathsf{L}^{-1} \ = \ \mathsf{LL}^{-1}\mathsf{T}_{\mathsf{L}(\boldsymbol{\kappa})} \ = \ \mathsf{T}_{\mathsf{L}(\boldsymbol{\kappa})} \,.$$

28: Observation. There exist groups G with $Inn(G) \cong G$, yet with center Z(G) non-trivial. \Diamond

Proof. Let G be

$$\mathbb{D}_2 \times \mathbb{D}_4 \times \mathbb{D}_8 \times \mathbb{D}_{16} \times \dots$$

By (10)...

Examples of homomorphisms. For posints K,L and cyclic gps $(\mathbb{Z}_K, +)$ and $(\mathbb{Z}_L, +)$, what is the set $H := \text{Hom}(\mathbb{Z}_K \to \mathbb{Z}_L)$?

Let D := GCD(K, L) and write

$$K = D \cdot A$$
 and $L = D \cdot B$, where $A \perp B$.

A homomorphism $f \in H$ is determined by where it sends 1; $f(y) = y \cdot f(1)$. This f is well-defined as long as it sends 0 and K to the same place. So we need that

$$0 \equiv_L f(K) \stackrel{\text{note}}{=\!\!=\!\!=} DA \cdot f(1).$$

I.e, $DA \cdot f(1) \models DB$. Hence we need $A \cdot f(1) \models B$. Since $A \perp B$, this latter is equiv to $f(1) \models B$. Writing f(1) := jB, we get D many homomorphisms

$$\operatorname{Hom}(\mathbb{Z}_K \to \mathbb{Z}_L) = \left\{ f_M \middle| \begin{array}{c} M = jB, \text{ where} \\ j \in [0 .. D) \end{array} \right\},\,$$

defined by $f_M(y) := [M \cdot y] \mod L$.

When L = K. Let E be the set of endomorphisms of $(\mathbb{Z}_K, +)$. So (E, \circ) is a semigroup; indeed, a commutative semigp. It is semigp-isomorphic to (\mathbb{Z}_K, \cdot) . Its automorphism subgp is, of course, gp-isomorphic with $(\Phi(K), \cdot)$.

Ways to count in groups

For a (possibly infinite) group G and posint D, define

$$S_{D,G} := \{x \in G \mid \operatorname{Ord}(x) = D\}.$$

On $S_{D,G}$ define this relation: $x \sim_D y$ IFF $\langle x \rangle_G = \langle y \rangle_G$.

29: Phi Lemma. With $S_{D,G}$ and \sim_D from above: $x \sim_D y$ IFF $x \in \langle y \rangle$. In particular, each equivalence class has precisely $\varphi(D)$ many elements. So $\varphi(D)$ divides $|S_{D,G}|$.

Moreover, the ratio $|S_{D,G}|/\varphi(D)$ equals the number of <u>cyclic</u> order-D subgroups of G.

Proof. By hypothesis, $\langle x \rangle \subset \langle y \rangle$. But these sets have the same, *finite*, cardinality. So they are equal.

An elt $x \in G$ generates an order-D cyclic subgp IFF $x \in S_{D,G}$. So the order-D cyclic subgroups are in 1-to-1 correspondence with the above equivalence classes.

Divisibility ideas. All these come from splitting G into equal-sized subsets.

30: Lemma. Suppose $\psi: G \rightarrow Q$ is a surjective group-homomorphism. Then $\operatorname{Ord}(Q) \bullet \operatorname{Ord}(G)$. Indeed, $|Q| \cdot |K| = |G|$, where $K \coloneqq \operatorname{Ker}(\psi)$.

Proof. The ψ -inverse-image of each $q \in Q$ is a left-coset of K in G. (Using right-cosets also works, since $K \triangleleft G$.) \blacklozenge

31: Lagrange's Theorem. Given groups $H \subset G$, then, $Ord(H) \triangleleft Ord(G)$.

Proof. The left-cosets of H form a partition of G.

Ques. Q1. Suppose $N := \operatorname{Ord}(G)$ is finite, and posint $D \triangleleft N$. Must G have a cyclic subgp of order D? How about just a (non-cyclic) subgp?

No. The N^{th} dihedral group \mathbb{D}_N is generated by a flip **f** and an order-N rotation **r**.

Although $Ord(\mathbb{D}_{15}) = 30$ and $6 \triangleleft 30$, nonetheless \mathbb{D}_{15} has \underline{no} elt of order 6: Its 15 "flip elts", \mathtt{fr}^i , each have order 2. And inside the order-15 rotation-subgp there are certainly no order-6 elts, courtesy Monsieur Lagrange.

BTWay, the divisors k of 15 are 15, 5, 3, 1. The number of elts in $\langle \mathbf{r} \rangle$ of each of these orders is

k	15	5	3	1	And $8+4+2+1=15.^{\circ 4}$
$\boldsymbol{arphi}(k)$	8	4	2	1	

Although \mathbb{D}_{15} has no *element* of order-6, it <u>does</u> have a sub*group* of order 6. The subgp $\langle \mathbf{f}, \mathbf{r}^5 \rangle$ is isomorphic to \mathbb{D}_3 .

32: Really really No. Although $Ord(\mathbb{A}_4) = 12$ and $6 \triangleleft 12$, nonetheless \mathbb{A}_4 has <u>no</u> subgroup of order 6: \Diamond

Proof. The cycle-structures for even permutations on four tokens are

Cyc-struct	$\lceil 1, 1, 1, 1 \rfloor$	$\lceil 2, 2 \rfloor$	$\lceil 3, 1 \rfloor$
Order	1	2	3
How many	1	$\frac{1}{2} \cdot \binom{4}{2} = 3$	$2 \cdot \binom{4}{1} = 8$

And $1+3+8=12=|\mathbb{A}_4|$.

Let H be the alleged order-6 subgp of G. Necessarily there is a $\beta \in H$ with cyc-struct $\lceil 3, 1 \rfloor$. If H owned a $\lceil 2, 2 \rceil \alpha$, then $\alpha' := \beta \alpha \beta^{-1}$ would have to be a different $\lceil 2, 2 \rceil$ (they couldn't commute). But then H includes the Klein-4 group $\langle \alpha, \alpha' \rangle$. Yet $4 \nearrow 6$.

The upshot is that no elt of $H \setminus \{\mathbf{e}\}$ is $\lceil 2, 2 \rfloor$, so each is a $\lceil 3, 1 \rfloor$. And there are 5 of them. Courtesy (29), then, 5 $\triangleright \varphi(3)$. But $5 \triangleright 2$.

33: Cauchy's Thm for finite abelian groups. Suppose $N := |G| < \infty$ where G is an abelian group, written multiplicatively. If prime p | N, then there exists $y \in G$ with Ord(y) = p.

Proof. [From the web.] Enumerate G as g_1, g_2, \ldots, g_N and let K_1, \ldots, K_N be their orders. ISTProve that

$$p \bullet \mid \widetilde{K} := \prod_{j=1}^{N} K_j$$

since then, WLOG, $p \bullet | K_2$; so $g_2^{[K_2/p]}$ has order p. Now $\widetilde{G} := \mathbb{Z}_{K_1} \times \ldots \times \mathbb{Z}_{K_N}$ has order \widetilde{K} . The map

$$f: \widetilde{G} \rightarrow G$$
 by $f((\ell_1, \dots, \ell_K)) := g_1^{\ell_1} g_2^{\ell_2} \cdots g_N^{\ell_N}$

is onto, since $f((1,0,\ldots,0)) = g_1$, etc.. And f is a group-homomorphism since G is abelian. Thus $\operatorname{Ord}(G) \bullet \operatorname{Ord}(\widetilde{G})$. Hence $p \bullet \operatorname{Ord}(G) \bullet \widetilde{K}$.

A more standard proof uses induction on quotient groups.

Pf of (33). WELOG p := 5. We may assume that

34: If Q is a finite abelian group with $Ord(Q) \triangleright 5$, then Q owns an element of order 5.

holds for each group Q with |Q| < |G|.

It suffices to produce a $y \in G$ with $Ord_G(y) \triangleright 5$.

Since |G| > 1 we can pick a nt-element $h \in G$; WLOG $K := \operatorname{Ord}(h) \geqslant 5$. Thus 5 divides $\frac{N}{K}$, which is the order of $Q := \frac{G}{H}$, where $H := \langle h \rangle$; note $H \triangleleft G$ since G is abelian. Finally, $h \neq \mathbf{e}$ so |Q| < |G|.

Thus (34) applies to produce an element $y \in G$ with $Ord_Q(yH) = 5$. And by (5,5'), the Periods Lemma, $Ord_G(y) \triangleright Ord_O(yH)$.

Group actions. The symbol $G \circlearrowleft \Omega$ means that gp G acts on set Ω ; there is a gp-hom $(\psi: G \to \mathbb{S}_{\Omega})$. For $g \in G$ and $\omega \in \Omega$, write the gp-action as $\psi_g(\omega)$ or $g(\omega)$ or just $g\omega$. Define the **orbit** and **stabilizer** of a point ω , and the **fixed-pt set** of a group-element g:

$$\mathcal{O}_{\psi}(\omega) := \{ g\omega \mid g \in G \} \qquad \subset \Omega;$$

$$\operatorname{Stab}_{\psi}(\omega) := \{ g \in G \mid g\omega = \omega \} \qquad \subset G;$$

$$\operatorname{Fix}_{\psi}(g) \; \coloneqq \; \{\omega \in \Omega \mid g\omega = \omega\} \qquad \subset \; \Omega \, .$$

This $Stab(\omega)$ is a subgp, but is rarely normal in G:

35:
$$\forall f \in G$$
: $f \cdot \operatorname{Stab}(\omega) \cdot f^{-1} = \operatorname{Stab}(f\omega)$.

36: Orbit-Stabilizer Lemma. For each $\omega \in \Omega$:

$$\bullet: \operatorname{Ord}(\operatorname{Stab}_{\psi}(\omega)) \cdot |\mathcal{O}_{\psi}(\omega)| = \operatorname{Ord}(G). \qquad \diamondsuit$$

 $^{^{\}heartsuit 4}$ Indeed, this yields a proof that $\sum_{d \in N} \varphi(d)$ equals N.

Proof. Let $H := \operatorname{Stab}(\omega)$. Say two elements $g, f \in G$ are "equivalent", $g \sim f$, if $g\omega = f\omega$. Evidently, the equiv-class of g is simply the left coset gH. These equivalence-classes partition G; hence (*).

37: Burnside's Lemma. Counting cardinalities,

$$\label{eq:tab_operator} \mbox{\uparrow:} \quad \sum_{\omega \in \Omega} \big| \mathrm{Stab}(\omega) \big| \ \ \stackrel{\#}{=} \ \ \Big\{ (g, \omega) \ \Big| \ g\omega = \omega \Big\} \ \ \stackrel{\#}{=} \ \ \sum_{g \in G} \big| \mathrm{Fix}(g) \big| \ .$$

Counting the number of G-orbits, then,

Proof. The number of G-orbits equals

$$\sum_{\omega \in \Omega} \frac{1}{|\mathcal{O}(\omega)|} \stackrel{\text{Orb-Stab, (36*)}}{=} \frac{1}{|G|} \cdot \sum_{\omega \in \Omega} |\text{Stab}(\omega)|.$$

Now apply $(37\dagger)$ to earn $(37\ddagger)$.

Application: Coloring a cube's faces. Color the six faces of a cube red, white and blue. How many distinct colorings are there, up to orientation-preserving rotation? We will use Burnside's Lemma. The group, G, of orientation-preserving rotations of the cube has $6 \cdot 4 = 24$ elts, and is group-isomorphic to \mathbb{S}_4 . In the $2^{\rm nd}$ column, below, remark that 1+6+3+8+6=24=|G|.

What isometry g ?	How many such g ?	$\begin{vmatrix} \#\operatorname{Fix}(g) \\ = 3^F. \end{vmatrix}$	$F := {\text{\#}[\text{Face-orbits} \atop \text{under } \langle g \rangle]}.$
Id	1	3^{6}	1+1+1+1+1+1
FaceRot 90°	$\frac{6}{2} \cdot 2 = 6$	3^3	1+4+1
FaceRot 180°	$\frac{6}{2} \cdot 1 = 3$	3^{4}	1+2+2+1
VertexRot 120°	$\frac{8}{2} \cdot 2 = 8$	3^{2}	3+3
EdgeRot 180°	$\frac{12}{2} \cdot 1 = 6$	3^{3}	2+2+2

The sum $\frac{1}{24} \cdot [1 \cdot 3^6 + 6 \cdot 3^3 + 3 \cdot 3^4 + 8 \cdot 3^2 + 6 \cdot 3^3]$ equals 57. Using K many colors, the number of K-colorings is $\frac{1}{24} \cdot [K^6 + 3K^4 + 12K^3 + 8K^2]$, i.e, is

38:
$$K^2 \cdot [K^4 + 3K^2 + 12K + 8]/24$$
. (Faces)

Coloring a cube's vertices. K-color the eight vertices of a cube. How many rotationally-distinct colorings are there?

What isometry g ?	$\#\{ \mathrm{such}\ g \}$	$ #Fix(g) = K^V. $	$V := {}^{\#}[\text{Vertex-orbits} \text{ under } \langle g \rangle].$
Id	1	K^8	[1 ⁸]
FaceRot 90°	6	K^2	$\lceil 4^2 \rfloor$
FaceRot 180°	3	K^4	$\lceil 2^4 \rfloor$
VertexRot 120°	8	K^4	$\lceil 1^2, 3^2 \rfloor$
EdgeRot 180°	6	K^4	$\lceil 2^4 \rfloor$

The coeff of K^4 is 3+8+6=17. So the number of vertex K-colorings is $\frac{1}{24} \cdot [K^8 + 17K^4 + 6K^2]$ i.e, is

39:
$$K^2 \cdot [K^6 + 17K^2 + 6]/24$$
. (Vertices)

Class equation

Consider a finite group acting on a finite set, $G \circ \Omega$, and let S be its set of orbits. The trivial assertion $|\Omega| = \sum_{0 \in S} |0|$ leads to a useful formula, when we consider G acting on itself via conjugation. Firstly, the Orbit-Stabilizer thm restates the circled as

$$|\Omega| = \sum_{\omega \in All \cap Reps} \frac{|G|}{|\operatorname{Stab}(\omega)|},$$

where "AllOReps" stands for "all orbit representatives"; this is one token ω per G-orbit. Now let

$$\operatorname{Fix}(G) := \bigcap_{g \in G} \operatorname{Fix}(g)$$
.

This is the set of ω in 1-point orbits, i.e, $\mathcal{O}(\omega) = {\omega}$. Let's pull out these *trivial orbits* and define

$$OReps := AllOReps \setminus Fix(G);$$

this has one representative in each *non-trivial* orbit. We have a primordial *class equation*,

40:
$$|\Omega| = |\operatorname{Fix}(G)| + \sum_{\omega \in \operatorname{OReps}} \frac{|G|}{|\operatorname{Stab}_G(\omega)|}.$$

Specializing to conjugation. We now let $\Omega := G$, and have G act on Ω by conjugation. So we have a homomorphism $\mathcal{J}: G \to \mathbb{S}_{\Omega}$ by $g \mapsto J_g$, where $J_g(\omega)$ equals $g\omega g^{-1}$.

Acting by conjugation, the stabilizer $\operatorname{Stab}_G(\omega)$ is the *centralizer* $\mathcal{C}_G(\omega)$. The orbit of ω is called its *conjugacy class*, written

$$\mathbb{C}(\omega) := \{g\omega g^{-1} \mid g \in G\}.$$

A conjugacy class is "non-trivial" if it has more than one point. So $\mathbb{C}(h)$ is trivial IFF $\mathbb{C}(h) = G$ IFF $h \in \mathbb{Z}(G)$, where $\mathbb{Z}(G) := \bigcap_{h \in G} \mathbb{C}(h)$ is the **center** of G. Below, let " $h \in PECC$ " mean to take <u>one</u> representative h "Per Each Conjugacy Class". Let PCC mean "Per non-trivial Conjugacy Class".

41: Class-Equation Thm. For a finite group G,

41':
$$|G| = |Z(G)| + \sum_{h \in PCC} \frac{|G|}{|\mathcal{C}(h)|}.$$

Each summand $|G|/|\mathcal{C}(h)|$ is in [2..|G|], and is a proper divisor of |G|. The Σ -sum is empty, hence zero, IFF G is abelian.

Remark. A less useful form of the class-eqn does not separate out the size-1 conjugacy classes. It says

$$|G| = \sum_{h \in PECC} \frac{|G|}{|\mathcal{C}(h)|}.$$

Proof. Everything has been shown, except for the observation that when the action is conjugation, then Fix(G) is the center Z(G).

We get a nice corollary when G is a "p-group".

42: Center-pop Thm (P.403). Suppose $|G| = p^L$, where p is prime and $L \in \mathbb{Z}_+$. Then Z(G) is non-trivial. (So $|Z(G)| = p^K$ for some $K \in [1..L]$.)

Proof. The centralizer of each $h \in PCC(G)$ is a proper subgroup, so p divides $|G|/|\mathcal{C}(h)|$. Hence p divides the sum on RhS(41'). So p divides |Z(G)|.

43: Cauchy's Thm for finite groups (P.406). Suppose $N := |G| < \infty$. If prime $p \bullet | N$, then there exists $y \in G$ with Ord(y) = p.

Proof. This holds when G = 1, so we may assume

If
$$p \bullet | \operatorname{Ord}(Q)$$
 then Q has an order- p element.

holds for each group Q with |Q| < |G|. So WLOG we may assume that each centralizer $\mathcal{C}(h)$, for h in PCC(G), has order not a multiple of p. Thus p divides the RhS(41') sum. So $p \in \mathrm{Ord}(\mathbf{Z}(G))$.

We may now apply (33), Cauchy's thm for abelian groups, to Z(G), to get a order-p element.

Remark. We get a nice progression of proofs. Note that (34) uses induction on quotient groups, but does not use the Class-Eqn, whereas Center-pop Thm (42) uses the class equation but no induction. The above Cauchy's thm (43), used quotient-induction to put the class equation in play.

An jazzed-up (43) argument will give Sylow's first theorem.

Defn. Fix a prime p. For each natnum k and finite group Q, define this proposition.

P(k,Q): If $p^k \bullet Ord(Q)$ then Q has a subgroup of order p^k .

We now show that this holds universally.

44: Sylow's First Thm. For each prime p, for each natural number k and finite group G, proposition P(k, G) holds.

Pf. Always P(0,*) holds, so fixing a $K \ge 1$ and finite group G, we show that P(K,G). We may assume that $Ord(G) \triangleright p^K$ and

45: P(K-1,*) holds. Also P(K,Q) obtains, for each group Q with |Q| < |G|.

Cauchy's thm for abelian groups now gives us a subgroup $H \subset Z(G)$ of order-p. Every subgp of the center is G-normal, so we have a quotient group $Q := \frac{G}{H}$, and p^{K-1} divides its order. By (45), this Q has a subgroup Q' of order p^{K-1} .

Lastly, $H' := \bigcup_{U \in Q'} U$ is a subgroup; it is a union of H-cosets U. And $|H'| = |H| \cdot |Q'| = p \cdot p^{K-1} = p^K$.

Misc. counting results. We first state a theorem just for pedagogical purposes.

46: Lemma. We have a subgroup $H \subset \mathbf{Z}(G)$. Suppose that each two left H-cosets, H_1 and H_2 , have representatives $y_i \in H_i$ such that $y_1 \leftrightarrows y_2$. Then G is abelian.

Proof. Pick two arbitrary $x_i \in G$. By hyp., there are $y_i \in Hx_i$ which commute. Write x_i as h_iy_i . So x_1x_2 equals

$$y_1h_1[y_2h_2] = y_1y_2h_2h_1$$
, since $h_1 \in \mathcal{Z}(G)$,
 $= y_2y_1h_2h_1$, since $y_2 \leftrightarrows y_1$,
 $= y_2h_2y_1h_1$, since $h_2 \in \mathcal{Z}(G)$.

And this equals x_2x_1 .

An immediate corollary is this " $G \mod Z$ " lemma.

47: G/Z Lemma. We have a subgroup $H \subset Z(G)$; necessarily $H \lhd G$. If G/H is cyclic, then G is abelian. \Diamond

Remark. In the lemma, any of G, H or G/H may be infinite. Hypothesis "G/H is cyclic" cannot be weakened to "G/H is abelian". For example, the 8 elt dihedral group $G := \mathbb{D}_4$ is non-abelian. It has presentation

$$G \; = \; \left\langle \mathbf{r},\mathbf{f} \; \middle| \; \mathbf{f}^2 = \mathbf{e}, \; \mathbf{frfr} = \mathbf{e}, \; \mathbf{r}^4 = \mathbf{e} \right\rangle.$$

Its center is $H := \{\mathbf{e}, \mathbf{r}^2\}$ and the quotient group G/H is isomorphic to \mathbb{D}_2 , which is abelian $(\cong \mathbb{Z}_2 \times \mathbb{Z}_2)$. What goes wrong with the proof, below? Well, the two H-cosets $\{\mathbf{r}, \mathbf{r}^3\}$ and $\{\mathbf{f}, \mathbf{fr}^2\}$ have no representatives which commute.

Proof. Pick an elt $z \in G$ so that coset zH generates the cyclic group Q := G/H. Each element of Q has form $[zH]^n$. Since H is G-normal, $[zH]^n = z^nH$. So we let z^n be our representative of coset $[zH]^n$.

48: Lemma. In group G, suppose <u>commuting</u> elements a, c have **different prime** orders p and q. Then

$$Ord(ac) = p \cdot q$$
.

Proof. Let y := ac. Were $y = \mathbf{e}$ then $p = \operatorname{Ord}(a) = \operatorname{Ord}(c^{-1}) = \operatorname{Ord}(c) = q$; $\not \gg$. So $\operatorname{Ord}(y) \neq 1$. Since $a \leftrightarrows c$.

$$\operatorname{Ord}(y) \bullet \operatorname{LCM}(p,q) \stackrel{\text{note}}{=\!\!\!=\!\!\!=} p \cdot q$$
.

Were $\operatorname{Ord}(y) \bullet | p$, then $\mathbf{e} = [ac]^p = c^p$, so $p | \bullet \operatorname{Ord}(c)$. I.e $p | \bullet q$. Contradiction.

So $\operatorname{Ord}(y) \nearrow p$. Ditto $\operatorname{Ord}(y) \nearrow q$. But $\operatorname{Ord}(y) \bullet pq$. Thus $\operatorname{Ord}(y) = pq$,

49: Prop'n. Suppose $K,L \subset G$ are groups. Then

$$\dagger: |KL| = |K| \cdot |L| / |K \cap L|$$

gives the cardinality of the product-set KL, which may or may not be a group. \Diamond

Proof. Let $N := |K \cap L|$. Certainly the map

$$\sharp$$
: $K \times L \to KL : (k, \ell) \mapsto k\ell$

is onto. We show that an elt $\kappa\lambda \in KL$ has precisely N many preimages under (‡). Each $c \in K \cap L$ yields $\kappa c \in K$ and $c^{-1}\lambda \in L$, with $\kappa c \cdot c^{-1}\lambda$ equaling $\kappa\lambda$. Conversely, a product $k\ell = \kappa\lambda$ yields a common element

$$\kappa^{-1}k = \lambda \ell^{-1} =: c \quad \text{in } K \cap L.$$

And $\kappa c = k$ and $c^{-1}\lambda = \ell$. So each c gives a preimage.

Normalizer mod Centralizer

Call a posint N is **grouply unique** if the cyclic group is the *only* group of order N. We get a sufficient condition for a product $p \cdot q$ to be grouply-unique. Here is a routine generalization of an elegant proof from Gallian.

50: Theorem. Suppose p < q are prime numbers st.

†:
$$p-1 \geqslant q-1$$
 and $p \geqslant q-1$.

Then the only group G of order $\mathbf{p} \cdot \mathbf{q}$ is cyclic.

 \Diamond

Setup. FTSOC we'll assume that G is not cyclic. Our goal is to exhibit <u>commuting</u> elts $h, k \in G$ of orders p and q, resp.. Necessarily, the product hk will have order pq. To produce this miracle, we'll show that

51: G has a unique order-q subgp; call it K. Moreover, its centralizer $\mathcal{C}_G(K)$ is all of G.

The uniqueness implies that each elt $h \in G \setminus K$ (an h exists, since pq > q) necessarily has order p. And h commutes with each chosen $k \in K \setminus \{e\}$.

Proof of (51). We proceed in four steps.

There exists an order-q element in G.

FTSOC, suppose no elt $x \in G \setminus \{e\}$ has order-q; so each x has order-p. Since p is prime, the order-p elts come in equivalence classes, $\{x, x^2, \dots, x^{p-1}\}$, of size p-1. Hence p-1 must divide Ord(G)-1. But

$$pq - 1 = [p-1]q + [q-1],$$

so this would imply $p-1 \triangleleft q-1$. But this $\Re s$ (50†). The upshot: There exists an order-q cyclic subgp $K \subset G$.

This order-q subgp is unique. Were there another, call it H, then

$$H \cap K = \{\mathbf{e}\},\$$

since q is prime. From (49†), then,

$$|HK| = \frac{q \cdot q}{1}.$$

But inequality $|G| \ge |HK|$ implies $p \ge q$; a contradiction. So there is but one order-q subsp.

The normalizer $\mathcal{N}_G(K) = G$. Conjugating K must give a subgp isomorphic to K; thus is K itself.

The centralizer is all of G. Let $\mathfrak{C} := \mathfrak{C}_G(K)$ denote the centralizer. Since K is cyclic, it is abelian. So $K \subset \mathfrak{C} \subset G$. By Lagrange's thm, then,

$$q \leqslant |\mathcal{C}| \leqslant pq$$
.

Since p is prime, ISTShow that $|\mathcal{C}| \neq q$.

Were $|\mathcal{C}| = q$, then the quotient gp

$$\frac{\mathcal{N}_G(K)}{\mathfrak{C}} \stackrel{\text{note}}{=} \frac{G}{K}$$

would have order p. This quotient is gp-isomorphic to a subgp of Aut(K). Consequently

$$p \bullet \operatorname{Ord}(\operatorname{Aut}(K))$$
.

But K is finite-cyclic, so $\operatorname{Aut}(K)$ is gp-isomorphic to $(\Phi(q), \cdot)$. Thus p divides $\varphi(q) \stackrel{\text{note}}{=} q-1$. But this annoys $(50\dagger)$.

What are some examples of this thm?

Works: $p < q$	Fails: $p < q$	Why fails
5 < 7	3 < q	2 • <i>q</i> −1
5 < 19	5 < 11	5 ♦ 10
5 < 23	5 < 13	4 • 12
7 < 11	7 < 13	6 • 12
7 < 17	7 < 19	6 • 18

Sylow Thms

First a preliminary.

52: Lemma. Finite groups $Y \triangleleft G$ and prime **p** have

*:
$$p \upharpoonright |G.Y| \stackrel{note}{=} \frac{\#_G}{\#_Y}$$
.

Suppose an $x \in G$ has $Ord(x) = p^L$, for some natnum L. Then $x \in Y$.

Proof. Let $Q := \frac{G}{Y}$. The homomorphism $G \rightarrow Q$ is surjective, so $q := \operatorname{Ord}_Q(xY) \triangleleft \operatorname{Ord}(x) = p^L$. Thus q is a power-of-p. But q must divide $\operatorname{Ord}(Q)k$, by Lagrange, hence is coprime to p. The only such power-of-p is $q = p^0 = 1$. So xY = Y, i.e, $x \in Y$.

Remark. Dropping the normality $Y \triangleleft G$ can cause the result to fail. With $G := \mathbb{S}_3$, let Y be the order-2 subgp generated by a 2-cycle, and let x be a different 2-cycle.

53: Coro. Suppose $Y \in \operatorname{Syl}_p(G)$, and $H \subset G$ is a p-group. If $H \subset \mathcal{N}_G(Y)$, then $H \subset Y$.

Proof. Let $N := \mathcal{N}_G(Y)$. Since Y is Sylow-p, index $|G \cdot Y|$ is coprime to p. But $|G \cdot Y| = |G \cdot N| \cdot |N \cdot Y|$, so $p \upharpoonright |N \cdot Y|$. We may thus apply (52) to groups $Y \triangleleft N$, to conclude:

 $\forall x \in N$: If Ord(x) is a power-of-p, then $x \in Y$.

By hyp., $H \subset N$. Each $x \in H$ necessarily has order a power-of-p, since H does. So $x \in Y$. Thus $H \subset Y$.

Conventions. In this section, G is always a finite gp; let $N := \operatorname{Ord}(G)$. Fix a prime p and write $\operatorname{Ord}(G) = p^L \cdot n$, with $n \perp p$. A subgroup $K \subset G$ is a "p-Sylow subgroup of G" if $^{\#}\operatorname{Ord}(K) = p^L$. Our standing convention is:

54: Subgroups $Y,X \subset G$ are p-Sylow, and $H \subset G$ is a p-subgroup.

Henceforth I use 5 to represent p and L=4. So 625 \triangleleft $N \nearrow 3125$. Let $\mathcal Y$ be the set of 5-Sylow subgps of G.

We will consider G acting on \mathcal{Y} via conjugation: For an $x \in G$, the action of x on $Y \in \mathcal{Y}$ is conjugation $K \mapsto xKx^{-1}$.

55: Sylow Thm.

- a: For each Po5 $5^k \le 625$, there exists a G-subgroup H, with ${}^{\#}H = 5^k$.
- b: There exists a Sylow subgp. I.e, y is non-empty.
- c: Each Po5 subgp H lies inside some 5-Sylow subgroup K. Indeed, for each G-orbit $\mathfrak{O} \subset \mathfrak{Y}$. there exists a $K \in \mathfrak{O}$ with $(K \supset H)$.
- d: The 5-Sylow subgps y form one single G-orbit. Furthermore

#y
$$\bullet$$
 Ord(G)
#y $\equiv_5 1$.

Whoa! The fol. lemma and proof is broken.

56: Lemma. $G \supset H$ finite groups The index

$$r := |\mathcal{N}(H) : \mathcal{C}(H)|$$

divides $|\operatorname{Aut}(H)|$. When H is a cyclic p-group, i.e $|H| = p^{K+1}$, then

*:
$$r \bullet p^K[p-1]$$
.

Suppose $H \in Syl_p(G)$ is abelian. Then each of

$$|G: \mathcal{N}_G(H)|, |\mathcal{N}_G(H): \mathcal{C}_G(H)|, |\mathcal{C}_G(H): H|$$

is co-prime to **p**. Consequently:

†: If $H \in \text{Syl}_p(G)$ is cyclic then $r \perp p-1$.

If (\dagger) and p is the smallest prime dividing |G|, then $\mathbb{N}_G(H) = \mathfrak{C}_G(H)$, since (Lagrange) r divides |G|. \diamond

Grouply-unique

Unfinished: as of 3Oct2018

Further results on Sylow subgroups

57: Thm. Consider finite gps $G \triangleright N$ and $H \in \operatorname{Syl}_5(G)$. Then the intersection $H \cap N$ is $\in \operatorname{Syl}_5(N)$.

Proof. Since it is a subgroup of H, this $H \cap N$ is a 5-gp. So it has an extension $\widehat{N} \in \operatorname{Syl}_5(N)$ with $\widehat{N} \supset H \cap N$.

This \widehat{N} is a 5-gp, so it has an extension to a $\widehat{G} \in \mathrm{Syl}_5(G)$. Evidently $I := \widehat{G} \cap N$ is a 5-group and a subgp of N. But $I \supset \widehat{N}$, and \widehat{N} has maximum cardinality among 5-subgps of N. Consequently

*:
$$\widehat{G} \cap N = \widehat{N}$$
,

since the groups are finite.

By Sylow, G is conjugate to H; there is an $x \in G$ with $x\widehat{G}x^{-1} = H$. From (*), then,

$$x \hat{N} x^{\text{-}1} \ = \ x \hat{G} x^{\text{-}1} \, \cap \, x N x^{\text{-}1} \, = \, H \cap N \, .$$

 $(xNx^{-1}=N \text{ since } N \triangleleft G.)$ Thus $H \cap N$ has the cardinality of a 5-Sylow subgp of N, so it is one. (And therefore $H \cap N = \widehat{N}.$)

58: Theorem. Consider finite gps $G \triangleright N$ and suppose $H \in \operatorname{Syl}_5(G)$. Then $\frac{HN}{N}$ is a 5-Sylow subgp of $\frac{G}{N}$. \diamondsuit

Proof.

Normal subgroups

For this section N is a natnum. Here is the theorem we are shooting for:

59: Thm. For each $N \in \mathbb{N} \setminus \{4\}$, the alternating group \mathbb{A}_N is simple. \diamondsuit

Remark. The alternating groups A_0 , A_1 , A_2 (i.e, comprising all the even permutations) are each the triv-gp, hence simple. Since $Ord(A_3)=3$ is prime, group A_3 is simple. So the first case we need consider is $N \geq 5$. Some of the lemmas below hold for lower N.

Let a **solo** 3-cycle mean a perm whose cycle lengths are 3, 1, 1, $\stackrel{N}{\dots}$ 1.

60: 3-cycle Lemma. The solo 3-cycles generate \mathbb{A}_N . \Diamond

Proof.

61: Lemma. Suppose $\pi \in \mathbb{A}_N$ has a 3-cycle. Let K be the smallest normal subgp of \mathbb{A}_N owning π . Then K has a solo 3-cycle. \diamondsuit

Proof.

Notes to me. Bertrand Postulate.

Burnside's Normal *p*-complement Theorem.

Filename: Problems/Algebra/algebra.basic-defns.latex
As of: Friday 27Jul2018. Typeset: 3Oct2018 at 08:54.