Affine maps of the plane

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/
23 September, 2017 (at 14:50)

Entrance. A matrix $M := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ acts on a point $[z \ y]_G$, sending it to $M[z \ y]_G$. Let $\hat{i} := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\hat{j} := \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Let

$$R_\theta := \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

be the std rotation matrix.

Recall that SL_2, the special linear group, is the group (sealed under matrix-mult and matrix inverse) of 2×2 matrices M with $\text{Det}(M) = 1$. Each $M \in SL_2$ is OPAP: Orientation Preserving, since $\text{Det}(M) > 0$; and Area Preserving, since $|\text{Det}(M)| = 1$.

Shears. A real m yields horizontal/vertical shears:

$$H_m := \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}, \quad V_m := \begin{bmatrix} 1 \\ m \end{bmatrix}.$$

Abbrev. “horizontal(ly) shear” by hshear, and “vertical(ly) shear” by vshear. Call a horizontal-or-vertical shear a “perp-shear”. Let Σ denote the group generated by perp-shears.

1: Perp-shear Lemma. Rotation R_π is a product of perp-shears: $H_2V_1H_2V_1$.

a: For each angle θ, rotation R_θ is a product of at most 5 perp-shears.

b: The group generated by the perp-shears is precisely SL_2.

\textbf{Pf of (a).} WLOG $\theta \in (0, \pi)$. Let $q = \begin{bmatrix} s \\ 0 \end{bmatrix}$ be the unit-vector at angle θ. Vertically shear \hat{i} up to height s, then over to be q, i.e take $\alpha \in \mathbb{R}$ st. $[H_\alpha V_s] \hat{i} = q$. This action moves \hat{j} to some vector $w := [H_\alpha V_s] \hat{j}$. Let L be the line parallel to vector q, and passing through point $R_{\pi/2}(q)$. Since shears are OPAP, this w must lie on L.

Take the $z \in \mathbb{R}$ which vshears q onto the horizon-axis, i.e $V_z q = \begin{bmatrix} 0 \\ z \end{bmatrix}$. For each $\beta \in \mathbb{R}$, then, the hshear H_β [fixes $V_z q$]. Since $V_z q$ is on the horizon-axis, point $V_z w$ cannot be [they are two edges of an area=1 parallelogram]. Hence $\{[H_\beta V_z] w \mid \beta \in \mathbb{R}\}$ is an entire line (horizontal, since vector $V_z q$ is horizontal). Letting $T_\beta := V_z H_\beta V_z$, then,

$$\{[T_\beta] w \mid \beta \in \mathbb{R}\} \text{ is all of } L.$$

Thus there is a particular β-value, b, st. $[T_b] w$ is orthogonal to $[T_b] q \not\equiv q$. Since q has length 1, our $[T_b] w$ must have length 1. Thus $[T_b] w$ is $[T_b] q$ hit by $R_\pi/2$. I.e,

$$[T_b] q = [R_\theta] \hat{i}, \quad \text{and} \quad [T_b] w = [R_\theta] \hat{j}.$$

Consequently

$$[R_\theta] \hat{i} = [T_b] q = [T_b H_\alpha V_s] \hat{i}, \quad \text{and} \quad [R_\theta] \hat{j} = [T_b] w = [T_b H_\alpha V_s] \hat{j}.$$

Thus R_θ equals $T_b H_\alpha V_s$, a product of 5 perp-shears.

\textbf{Proof of (b).} To show that a $T \in SL_2$ is a perp-shear product, let $u := T \hat{i}$ and $v := T \hat{j}$. We’ll carry pair (u, v) to (\hat{i}, \hat{j}) via perp-shears.

Take a rotation R st. $[s] := Ru$ has $0 < s < 1$. So there is an hshear H st. HRu has length 1. Now take the rotation R' st. $R' HRu$ is \hat{i}.

All this has carried v to $v' := R' HRv$. Since (\hat{i}, v') defines a parallelogram with signed-area 1, there is a (unique) hshear H' st. $H' v' = \hat{j}$. The upshot: $H' R' HR$ carries pair (u, v) to (\hat{i}, \hat{j}). So $T := [H' R' HR]^{-1}$.

Filename: Problems/Algebra/LinearAlg/affine-2d.latex