Linear Algebra MAS4105 6137

Class-A

Prof. JLF King 29Sep2015

Hello. All VSes here, $\mathbf{V}, \mathbf{H}, \mathbf{X}, \mathbf{Y}$, are \mathbb{R} -VSes. Use L_M for the lefthand trn defined by matrix M.

Show no work. Please write **DNE** in a blank if the de-A1: scribed object does not exist or if the indicated operation cannot be performed.

a The 3×3 elem-matrix whose lefthand action adds 8 times row-2 to row-1 is

In \mathbb{R}^3 , let $\mathbf{u} \coloneqq (8, 5, -1)$, $\mathbf{v} \coloneqq (1, 0, -4)$ and $\mathbf{w} \coloneqq (13, 10, 10)$. Circle: Then $\mathbf{w} \in \text{Line}(\mathbf{u}, \mathbf{v})$: TF Then $\mathbf{w} \in \operatorname{Spn}(\mathbf{u}, \mathbf{v})$: $T \in F$ Then $\operatorname{Spn}(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbb{R}^3$: ΤF

с In each blank below, write either "there exist" or "for all", Circle one of the underlined scalar-pairs, and Circle a phrase.

Assertion $|\operatorname{Spn}(\mathbf{v}, \mathbf{w}) \supset \operatorname{Spn}(\mathbf{x}, \mathbf{y})|$ means:

scalars $\underline{a}, \underline{b} \mid \underline{c}, \underline{d}$ (st. | we have that | and) scalars $\underline{a}, \underline{b} \mid \underline{c}, \underline{d}$ (st. | we have that)

$$a\mathbf{v} + b\mathbf{w} = c\mathbf{x} + b\mathbf{w}$$

Let $\mathsf{B} := \begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 3 & 6 & 0 & -3 & 0 \end{bmatrix}$. Then $\mathsf{R} := RREF(\mathsf{B})$ is

[show no work, here]

For subspace $\mathbf{V} \coloneqq \operatorname{Nul}(\mathsf{L}_{\mathsf{B}})$, use back-substitution, T and scaling, to produce an integer basis

 $\mathbf{v}_1 := ($). $\mathbf{v}_4 \coloneqq ($, $\mathbf{v}_3 := ($

[*Note:* Only use as many as the dimension of V.]

The map $PLY_3 \rightarrow PLY_3$ which sends $f \mapsto g$, where $q(x) \coloneqq x \cdot f'(x+5)$, is: Circle best Linear Affine Neither

f Consider these two matrices:

 $\mathsf{R} \coloneqq \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \quad \text{and} \quad \mathsf{A} \coloneqq \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$

Product matrix

[Hint: You don't need multiply matrices. Geometrically, what motion do these matrices represent?

A2: OYOP: Essay: Write on every third line, so that I can easily write between the lines. In grammatical English *sentences*, prove the following:

For linear map $T: \mathbf{H} \rightarrow \mathbf{V}$ from VS **H** to **V**, both finitedimensional, *carefully* state the Rank-Nullity Thm.

ii Give a careful proof, starting your argument with "Proof of Rank-Nullity Thm" and ending with "QED".

[In your proof, use 0 for the scalar zero. In contrast, use $\vec{0}_H$ and $\vec{0}_V$ for the zero-vector in the two spaces.]

